Critical Fluid Velocities for Removing Cuttings Bed Inside Horizontal and Deviated Wells

2010-01-01
Ozbayoglu, M. E.
Saasen, A.
Sorgun, M.
Svanes, K.
This study aims to estimate the critical fluid flow velocity for preventing the development of a stationary bed using empirical correlations valid for horizontal and highly inclined wellbores that can be easily used at the field. For this purpose, experiments have been conducted at METU-PETE Cuttings Transport Flow Loop for various conditions. Observations showed that a stationary bed is developed when the fuid velocity is less than 6.0 ft/s, and a critical fluid velocity of 8.0 ft/s is required to establish a no-bed condition. Results showed that the critical velocity and the thickness of the stationary bed, if developed, could be estimated with a reasonable accuracy.
PETROLEUM SCIENCE AND TECHNOLOGY

Suggestions

Nonlinear resonances of axially functionally graded beams rotating with varying speed including Coriolis effects
Lotfan, Saeed; Anamagh, Mirmeysam Rafiei; Bediz, Bekir; Ciğeroğlu, Ender (2021-11-01)
The purpose of the current study was to develop an accurate model to investigate the nonlinear resonances in an axially functionally graded beam rotating with time-dependent speed. To this end, two important features including stiffening and Coriolis effects are modeled based on nonlinear strain relations. Equations governing the axial, chordwise, and flapwise deformations about the determined steady-state equilibrium position are obtained, and the rotating speed variation is considered as a periodic distur...
Vibration Fatigue Analysis of a Cantilever Beam Using Different Fatigue Theories
Eldoğan, Yusuf; Ciğeroğlu, Ender (2014-02-11)
In this study, vibration fatigue analysis of a cantilever beam is performed using an in-house numerical code. Finite element model (FEM) of the cantilever beam verified by tests is used for the analysis. Several vibration fatigue theories are used to obtain fatigue life of the cantilever beam for white noise random input and the results obtained are compared with each other. Fatigue life calculations are repeated for different damping ratios and the effect of damping ratio is studied. Moreover, using strain...
A(p)/V-p specific inelastic displacement ratio for the seismic response estimation of SDOF structures subjected to sequential near fault pulse type ground motion records
DURUCAN, CENGİZHAN; Durucan, Ayse Rusen (2016-10-01)
This research study is focused on an improved statistical equation proposed to estimate the inelastic displacement ratio, C-1, of structures subjected to sequential (pre-shock, main shock, after shock) pulse type near fault (NF) ground motions. Proposed equation considers the effects of fundamental vibration period of the structure, T, lateral strength ratio, R, and frequency content of the design earthquake on the variation of the response. Frequency content of the design earthquake, represented by the A(p...
Mechanical performance of composite flat specimens and pressure vessels produced by carbon/epoxy towpreg dry winding
Okten, Yigit Kemal; Kaynak, Cevdet (2022-10-01)
The main purpose of this study is to evaluate the effects of certain processing parameters on the mechanical performance of carbon/epoxy towpreg wound composite structures. For this purpose, composite sample productions and their evaluations were conducted in two steps. In the first step, dry winding of carbon/epoxy towpregs was used to produce flat composite plates. Their evaluation was performed by rheological analysis, interlaminar shear tests, and unidirectional tensile tests. In the second step, towpre...
Elastic Response of Heat Generating Rod at a Variable Generating Rate
Eraslan, Ahmet Nedim; Varlı, Ekin (2014-09-28)
The aim of this study is to develop a computational model to analyze thermally induced stress and deformation in a heat generating solid rod. The rod is initially at zero temperature, but for times greater than zero heat is generated internally at both space and time dependent rate. As the rod is heated up slowly an uncoupled solution is realized. The heat conduction equation with a variable generation rate is solved by a finite element collocation method. Two different generation rates are handled. The num...
Citation Formats
M. E. Ozbayoglu, A. Saasen, M. Sorgun, and K. Svanes, “Critical Fluid Velocities for Removing Cuttings Bed Inside Horizontal and Deviated Wells,” PETROLEUM SCIENCE AND TECHNOLOGY, pp. 594–602, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67706.