Conductimetric and potentiometric titration of some hydroxylated cinnamic acids with tetrabutylammonium hydroxide in non-aqueous media

Aktas, AH
Yasar, G
Alsancak, O
Demirci, S
In this study, four hydroxycinnamic acids, namely 3,4-dihydroxycinnamic acid, 4-hydroxycinnamic acid, 4-hydroxy -3- methoxycinnamic acid and 4-hydroxy-3,5-dimethoxycinnamic acid, were titrated conductimetrically and potentiometrically using triethylamine and tetrabutylammonium hydroxide in acetonitrile, 2-propanol, and pyridine solvents under a nitrogen atmosphere at 25 degreesC.


Electrochemical polymerization of 9-fluorenecarboxylic acid and its electrochromic device application
Bezgin, Buket; CİHANER, ATİLLA; Önal, Ahmet Muhtar (Elsevier BV, 2008-09-01)
Poly(9-fluorenecarboxylic acid) (PFCA) was synthesized by electrochemical oxidation of 9-fluorenecarboxylic acid (FCA) using a mixture of nitromethane and boron trifluoride diethyl etherate as the solvent and tetrabutylammonium tetrafluoroborate as the supporting electrolyte. An insoluble and conducting brownish-orange film was deposited on the electrode surface, both during repetitive cycling and constant potential electrolysis at 1.15 V. Characterization of the polymer film has been carried out using Four...
Conducting polymers of octanoic acid 2-thiophen-3-yl-ethyl ester and their electrochromic properties
CAMURLU, P; Çırpan, Ali; Toppare, Levent Kamil (Elsevier BV, 2005-08-15)
Octanoic acid 2-thiophen-3-yl-ethyl ester was synthesized via the reaction of 3-thiophene ethanol with octanoyl chloride. The resulting monomer was electrochemically homopolymerized in the presence of tetrabutylammonium tetrafluoroborate as the supporting electrolyte, in the acetonitrile/borontrifluoride ethyl ether solvent system. The resulting polymer was characterized using various experimental techniques. Spectroelectrochemistry analysis of the homopolymer reflects electronic transitions at 434, approxi...
Chemical synthesis of pure and Gd-doped CaZrO3 powders
Gonenli, IE; Tas, AC (1999-01-01)
Aqueous solutions of calcium chloride (CaCl2.2H(2)O) and zirconium oxychloride (ZrOCl2.8H(2)O), in appropriate volumetric amounts, were used as the starting chemicals in the synthesis of phase-pure CaZrO3 powders. Rare earth element dopings (up to 25 at%) were performed by using the aqueous chloride solutions of gadolinium (Gd). Formation of CaZrO3 powders were achieved by two different chemical synthesis techniques: (i) self-propagating combustion synthesis, and (ii) precipitation in the presence of EDTA b...
Functionalization of oxabenzonorbornadiene: Manganese(III)-mediated oxidative addition of dimedone
ÇALIŞKAN, Raşit; Sari, Ozlem; Balcı, Metin (Wiley, 2017-09-01)
3-Chloro-1,2,3,4-tetrahydro-1,4-epoxynaphthalen-2-yl)-3-hydroxy-5,5-dimethylcy-clohex- 2-en-1-one, synthesized by the reaction of oxabenzonorbornadiene with Mn(OAc)(3) and dimedone in the presence of HCl in acetic acid, was submitted to ring-opening reactions with BBr3 and H2SO4. Reaction with BBr3 yielded 2 products, a 5-membered ring and an 8-membered ring, with the former being the major product. However, the H2SO4-supported reaction exclusively formed an 8-membered ring. The mechanism of formation of th...
Conducting polymers of succinic acid bis-(2-thiophen-3-yl-ethyl)ester and their electrochromic properties
SACAN, L; Çırpan, Ali; CAMURLU, P; Toppare, Levent Kamil (Elsevier BV, 2006-02-01)
The homopolymer and copolymer of succinic acid bis-(2-thiophen-3-yl-ethyl)ester with thiophene were achieved via constant potential electrolysis in the presence of tetrabutylammonium tetrafluoroborate as the supporting electrolyte, and acetonitrile/borontrifluoride ethylether (ACN/BFEE) (10:2 v/v) solvent mixture. The characterizations of both homopolymer (PSATE) and copolymer P(SATE-co-Th) were achieved by various techniques including cyclic voltammetry (CV), Fr-IR, scanning electron microscopy (SEM) and U...
Citation Formats
A. Aktas, G. Yasar, O. Alsancak, and S. Demirci, “Conductimetric and potentiometric titration of some hydroxylated cinnamic acids with tetrabutylammonium hydroxide in non-aqueous media,” TURKISH JOURNAL OF CHEMISTRY, pp. 501–507, 2001, Accessed: 00, 2020. [Online]. Available: