System identification with generalized orthonormal basis functions: an application to flexible structures

Nalbantoglu, V
Bokor, J
Balas, G
Gaspar, P
This paper presents an application of a multi-input/multi-output identification technique based on system-generated orthonormal basis functions to a flexible structure. A priori information about the poles of the system, part of which corresponds to the natural frequencies of the structure, is used to generate the orthonormal basis functions. A multivariable model is identified for the experimental flexible structure by using these orthonormal basis functions. It is shown that including a priori knowledge of the system dynamics via the use of orthonormal basis functions into the identification process has the advantage of reducing the number of parameters to be estimated. The multivariable model is used to design an H., controller for the experimental structure to suppress vibrations. The controller is implemented on the structure and very good agreement is obtained between the simulations and the experimental results.


State-space identification of switching linear discrete time-periodic systems with known scheduling signals
Uyanik, Ismail; Hamzacebi, Hasan; Ankaralı, Mustafa Mert (The Scientific and Technological Research Council of Turkey, 2019-01-01)
In this paper, we propose a novel frequency domain state-space identification method for switching linear discrete time-periodic (LDTP) systems with known scheduling signals. The state-space identification problem of linear time-invariant (LTI) systems has been widely studied both in the time and frequency domains. Indeed, there have been several studies that also concentrated on state-space identification of both continuous and discrete linear time-periodic (LTP) systems. The focus in this study is the fam...
Multipath Characteristics of Frequency Diverse Arrays Over a Ground Plane
Cetintepe, Cagri; Demir, Şimşek (Institute of Electrical and Electronics Engineers (IEEE), 2014-07-01)
This paper presents a theoretical framework for an analytical investigation of multipath characteristics of frequency diverse arrays (FDAs), a task which is attempted for the first time in the open literature. In particular, transmitted field expressions are formulated for an FDA over a perfectly conducting ground plane first in a general analytical form, and these expressions are later simplified under reasonable assumptions. Developed formulation is then applied to a uniform, linear, continuous-wave opera...
An Upper Bound for Limited Rate Feedback MIMO Capacity
Güvensen, Gökhan Muzaffer; Yılmaz, Ali Özgür (Institute of Electrical and Electronics Engineers (IEEE), 2009-06-01)
We develop a technique to upper bound the point-to-point MIMO limited rate feedback (LRF) capacity under a wide class of vector quantization schemes. The upper bound turns out to be tight and can also be used to obtain an absolute upper bound by using a bounding distribution for Grassmannian beamforming. The bounding technique can be applied to other problems requiring the exact evaluation of the expected value of matrix determinant.
Tool allocation in flexible manufacturing systems with tool alternatives
Buyurgan, N; Saygin, C; Kilic, SE (Elsevier BV, 2004-08-01)
In this paper, a heuristic approach for tool selection in flexible manufacturing systems (FMS) is presented. The proposed approach utilizes the ratio of tool life over tool size (LIS) for tool selection and allocation. The proposed method selects tool types with high LIS ratios by considering tool alternatives for the operations assigned to each machine. The performance of the method is demonstrated in sample problems as static examples, as well as in a simulation study for further analysis. This study also...
Verification of Modular Diagnosability With Local Specifications for Discrete-Event Systems
Schmidt, Klaus Verner (Institute of Electrical and Electronics Engineers (IEEE), 2013-09-01)
In this paper, we study the diagnosability verification for modular discrete-event systems (DESs), i.e., DESs that are composed of multiple components. We focus on a particular modular architecture, where each fault in the system must be uniquely identified by the modular component where it occurs and solely based on event observations of that component. Hence, all diagnostic computations for faults to be detected in this architecture can be performed locally on the respective modular component, and the obt...
Citation Formats
V. Nalbantoglu, J. Bokor, G. Balas, and P. Gaspar, “System identification with generalized orthonormal basis functions: an application to flexible structures,” CONTROL ENGINEERING PRACTICE, pp. 245–259, 2003, Accessed: 00, 2020. [Online]. Available: