Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Doxorubicin loading, release, and stability of polyamidoamine dendrimer-coated magnetic nanoparticles
Date
2013-06-01
Author
Rouhollah, Khodadust
Pelin, Mutlu
Serap, Yalcin
Gozde, Unsoy
Ufuk, Gunduz
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Nanotechnology is a promising alternative to overcome the limitations of classical chemotherapy. As a novel approach, dendrimer-coated magnetic nanoparticles (DcMNPs) maintain suitable drug delivery system because of their buildup of functional groups, symmetry perfection, nanosize, and internal cavities. They can also be targeted to the tumor site in a magnetic field. The aim of this study is to obtain an effective targeted delivery system for doxorubicin, using polyamidoamine (PAMAM) DcMNPs. Different generations (G2, G3, G4, and G7) of PAMAM DcMNPs were synthesized. Doxorubicin loading, release, and stability efficiencies in these nanoparticles (NPs) were studied. The results showed that low-generation NPs obtained in this study have pH-sensitive drug release characteristics. G4DcMNP, which releases most of the drug in lower pH, seems to be the most suitable generation for efficient Doxorubicin delivery. Furthermore, application of doxorubicin-loaded G4DcMNPs may help to overcome doxorubicin resistance in MCF-7 cells. On the contrary, G2 and G3DcMNPs would be suitable for the delivery of drugs such as vinca alkaloids (Johnson IS, Armstrong JG, Gorman M, Burnett JP. 1963. Cancer Res 23:13901427.) and taxenes (Clarke SJ, Rivory LP. 1999. Clin Pharmacokinet 36(2):99114.), which show their effects in cytoplasm. The results of this study can provide new insights in the development of pH-sensitive targeted drug delivery systems to overcome drug resistance during cancer therapy. (c) 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:18251835, 2013
Subject Keywords
Pharmaceutical Science
URI
https://hdl.handle.net/11511/67938
Journal
JOURNAL OF PHARMACEUTICAL SCIENCES
DOI
https://doi.org/10.1002/jps.23524
Collections
Department of Biology, Article