Differential response to doxorubicin in breast cancer subtypes simulated by a microfluidic tumor model

2017-11-01
Özçelikkale, Altuğ
Noe-Kim, Victoria
Elzey, Bennett D.
Dong, Zizheng
Zhang, Jian-Ting
Kim, Kwangmeyung
Kwon, Ick Chan
Park, Kinam
Han, Bumsoo
Successful drug delivery and overcoming drug resistance are the primary clinical challenges for management and treatment of cancer. The ability to rapidly screen drugs and delivery systems within physiologically relevant environments is critically important; yet is currently limited due to lack of appropriate tumor models. To address this problem, we developed the Tumor-microenvironment-on-chip (T-MOC), a new microfluidic tumor model simulating the interstitial flow, plasma clearance, and transport of the drug within the tumor. We demonstrated T-MOC's capabilities by assessing the delivery and efficacy of doxorubicin in small molecular form versus hyaluronic acid nanoparticle (NP) formulation in MCF-7 and MDA-MB-231, two cell lines representative of different molecular subtypes of breast cancer. Doxorubicin accumulated and penetrated similarly in both cell lines while the NP accumulated more in MDA-MB-231 than MCF-7 potentially due to binding of hyaluronic acid to CD44 expressed by MDA-MB-231. However, the penetration of the NP was less than the molecular drug due to its larger size. In addition, both cell lines cultured on the T-MOC showed increased resistance to the drug compared to 2D culture where MDA-MB-231 attained a drug-resistant tumor-initiating phenotype indicated by increased CD44 expression. When grown in immunocompromised mice, both cell lines exhibited cell-type-dependent resistance and phenotypic changes similar to T-MOC, confirming its predictive ability for in vivo drug response. This initial characterization of T-MOC indicates its transformative potential for in vitro testing of drug efficacy towards prediction of in vivo outcomes and investigation of drug resistance mechanisms for advancement of personalized medicine.
JOURNAL OF CONTROLLED RELEASE

Suggestions

Dual-adjuvant effect of pH-sensitive liposomes loaded with STING and TLR9 agonists regress tumor development by enhancing Th1 immune response
Kocabas, Banu Bayyurt; Almacioglu, Kubra; Bulut, Esin Alpdundar; Gucluler, Gozde; Tincer, Gizem; Bayik, Defne; Gürsel, Mayda; GÜRSEL, İHSAN (Elsevier BV, 2020-12-01)
Nucleic acid-based pattern recognition receptor agonists are effective adjuvants and immunotherapeutic agents. Rather than single applications, ligand combinations could synergistically potentiate immune responses by elevating cytokine and chemokine production via triggering multiple signaling pathways. However, short half-lives of such labile ligands due to nuclease attack and limited cellular uptake due to their structure significantly hamper their in vivo performances. More importantly, simultaneous deli...
Surface functionalization of SBA - 15 particles for amoxicillin delivery
Sevimli, Filiz F; Yılmaz, Ayşen; Department of Chemistry (2011)
There are several studies in order to control drug delivery, decrease the toxicity of drugs and also for novel biomedical applications. It is necessary to be able to control the release of the drug within the body by using drug delivery systems. Mesoporous silica compounds have only been discovered twenty years ago and they have already attracted many researchers to study these materials for several applications. SBA-15 particles have a highly ordered regular structure and are a good matrix for guest-host a...
Encapsulation of two different TLR ligands into liposomes confer protective immunity and prevent tumor development
Bayyurt, Banu; Tincer, Gizem; Almacioglu, Kubra; Alpdundar, Esin; Gürsel, Mayda; GÜRSEL, İHSAN (Elsevier BV, 2017-02-10)
Nucleic acid-based Toll-like receptor (TLR) ligands are promising adjuvants and immunotherapeutic agents. Combination of TLR ligands potentiates immune response by providing synergistic immune activity via triggering different signaling pathways and may impact antigen dependent T-cell immune memory. However, their short circulation time due to nuclease attack hampers their clinical performance. Liposomes offer inclusion of protein and nucleic acid-based drugs with high encapsulation efficiency and drug load...
Differential gene expression analysis related to extracellular matrix components in drug-resistant RPMI-8226 cell line
Mutlu, Pelin; Gündüz, Ufuk (Elsevier BV, 2012-4)
Drug resistance remains a major obstacle to the successful use of chemotherapeutic drugs for many types of cancers including multiple myeloma. It is becoming increasingly apparent that tumor microenvironment could provide a shelter to malignant plasma cells that allow their survival after initial drug exposure. This study demonstrates alterations in gene expression levels of several extracellular matrix (ECM) components in prednisone, vincristine and melphalan-resistant RPMI-8226 myeloma cells. Resistant RP...
Multifaceted Transport Characteristics of Nanomedicine: Needs for Characterization in Dynamic Environment
Özçelikkale, Altuğ; Han, Bumsoo (American Chemical Society (ACS), 2013-06-01)
Nanomedicine for cancer, where nanoparticles (NPs) are used to deliver drugs, imaging agents, and heat to tumors, shows great potential of improved therapeutic outcomes. In spite of promising early stage results, its clinical efficacy is still significantly limited due to complex transport barriers in vivo. These transport barriers are associated with tumor microenvironment, which is highly complex and heterogeneous and varies spatiotemporally. Thus, in order to improve the in vivo efficacy of nanomedicine,...
Citation Formats
A. Özçelikkale et al., “Differential response to doxorubicin in breast cancer subtypes simulated by a microfluidic tumor model,” JOURNAL OF CONTROLLED RELEASE, pp. 129–139, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69547.