Design of Polarization and Incident Angle Insensitive Dual-Band Metamaterial Absorber Based on Isotropic Resonator

Dincer, Furkan
Sabah, Cumali
Polarization and incident angle independent metamaterial-based absorber (MA) which acts as a strong dual-band resonator is designed and constructed. Besides, a method to design single/dualband MA is presented in detail. The proposed model is based on isotropic ring resonator with gaps and octa-star strip (OSS) which allows maximization in the absorption because of the characteristic features of the structure. Reflection and absorption responses are obtained both numerically and experimentally and compared to each other. Two maxima in the absorption are experimentally obtained around 90% at 4.42 GHz for the first band and 99.7% at 5.62 GHz for the second band which are in good agreement with the numerical simulations (95.6% and 99.9%, respectively). The numerical studies verify that the dual-band MA can provide perfect absorption at wide angles of incidence for both transverse electric (T E) and transverse magnetic (TM) waves. The proposed model can easily be used in many potential application areas such as security systems, sensors, medical imaging technology.


Mutual coupling of printed elements on a cylindrically layered structure using closed-form Green's functions
Acar, R. C.; Dural, G. (EMW Publishing, 2008-01-01)
A hybrid method to calculate mutual coupling of electric or magnetic current elements on a cylindrically layered structure using closed-form Green's functions is presented. When rho = rho' and phi is not very close to phi', closed-form Green's functions are employed in the calculation of MoM matrix entries. When both rho = rho' and phi = phi', series representation of the spectral domain Green's functions do not converge, therefore closed-form Green's functions can not be employed. In that case MoM matrix e...
Screening effect on the binding energies of shallow donors, acceptors and excitons in finite-barrier quantum wells
Akbas, H; Aktas, S; Okan, SE; Ulas, M; Tomak, Mehmet (Elsevier BV, 1998-01-01)
The conduction and valence subband energies in the presence of an electric field are calculated using the fifth-order Runge-Kutta method. The binding energies of shallow donors, accepters and excitons in finite-barrier GaAs/Ga1-xAlx As quantum wells are then obtained variationally in the presence of a magnetic field. The effects of a spatially dependent screening function epsilon(r) On the calculation of binding energies are specifically investigated. The use of epsilon(r) in comparison with the use of a co...
Characterization of GZO thin films fabricated by RF magnetron sputtering method and electrical properties of In/GZO/Si/Al diode
Surucu, O. Bayrakli (Springer Science and Business Media LLC, 2019-11-01)
The main focus of this work is the structural and optical characterization of Ga-doped ZnO (GZO) thin film and determination of the device behavior of In/GZO/Si/Al diode. GZO thin films were deposited by RF magnetron sputtering technique from single target. The structural and morphological properties of GZO film were investigated by X-ray diffraction (XRD), Raman scattering, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy analysis (EDS) measurements. Optical properties of the fil...
Frequency Selective Characteristics of a Plasma Layer with Sinusoidally Varying Electron Density Profile
GÜREL, ÇİĞDEM SEÇKİN; Oencue, Emrah (Springer Science and Business Media LLC, 2009-06-01)
In this study reflection, absorbtion and transmission characteristics of a plasma layer having sinusoidally varying electron number density are analysed. In the analysis, plasma layer is divided into thin subslabs with constant electron number densities. The general frequency selective behavior of the plasma is investigated by varying the plasma parameters, external magnetic field excitation and sinusoidal electron distribution in order to be used in recent plasma applications.
Transformation Electromagnetics Based Analysis of Waveguides With Random Rough or Periodic Grooved Surfaces
Ozgun, Ozlem; Kuzuoğlu, Mustafa (Institute of Electrical and Electronics Engineers (IEEE), 2013-02-01)
A computational model is introduced which employs transformation-based media to increase the computational performance of finite methods (such as finite element or finite difference methods) for analyzing waveguides with grooves or rough surfaces. Random behavior of the roughness is taken into account by utilizing the Monte Carlo technique, which is based on a set of random rough surfaces generated from Gaussian distribution. The main objective of the proposed approach is to create a single mesh, and to ana...
Citation Formats
F. Dincer, M. KARAASLAN, E. ÜNAL, K. DELİHACIOĞLU, and C. Sabah, “Design of Polarization and Incident Angle Insensitive Dual-Band Metamaterial Absorber Based on Isotropic Resonator,” PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, pp. 123–132, 2014, Accessed: 00, 2020. [Online]. Available: