Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Characterization of GZO thin films fabricated by RF magnetron sputtering method and electrical properties of In/GZO/Si/Al diode
Date
2019-11-01
Author
Surucu, O. Bayrakli
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
The main focus of this work is the structural and optical characterization of Ga-doped ZnO (GZO) thin film and determination of the device behavior of In/GZO/Si/Al diode. GZO thin films were deposited by RF magnetron sputtering technique from single target. The structural and morphological properties of GZO film were investigated by X-ray diffraction (XRD), Raman scattering, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy analysis (EDS) measurements. Optical properties of the film were determined with transmission measurement. Device characterization of In/GZO/Si/Al diode were done with the analysis of temperature dependent current voltage (I-V) measurement. The current conduction mechanism was investigated with the Thermionic Emission (TE) method. The deviation from the pure TE method was observed and this deviation was analyzed under the assumption of Gaussian Distribution (GD) of barrier height (TE emission with GD). The mean standard deviation and zero bias barrier height were calculated as 0.0268 (about %3) and 1.239 eV, respectively. Richardson constant was found to be as 115.42 A/cm(2) K-2 using the modified Richardson plot. In addition, series resistance R-s was obtained using Cheung's function. Finally, the interface state densities D-it were determined by using the forward bias I-V results.
Subject Keywords
Electrical and Electronic Engineering
,
Atomic and Molecular Physics, and Optics
,
Electronic, Optical and Magnetic Materials
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/63846
Journal
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
DOI
https://doi.org/10.1007/s10854-019-02286-w
Collections
Department of Electrical and Electronics Engineering, Article