Wavelet-based multiple description coding of 3-D geometry

2007-02-01
Norkin, Andrey
Bici, M. Oguz
Bozdağı Akar, Gözde
Gotchev, Atanas
Astola, Jaakko
In this work, we present a multiple description coding (MDC) scheme for reliable transmission of compressed three dimensional (3-D) meshes. It trades off reconstruction quality for error resilience to provide the best expected reconstruction of 3-D mesh at the decoder side. The proposed scheme is based on multiresolution geometry compression achieved by using wavelet transform and modified SPIHT algorithm. The trees of wavelet coefficients are divided into sets. Each description contains the coarsest level mesh and a number of tree sets coded with different rates. The original 3-D geometry can be reconstructed with acceptable quality from any received description. More descriptions provide better reconstruction quality. The proposed algorithm provides flexible number of descriptions and is optimized for varying packet loss rates (PLR) and channel bandwidth.

Suggestions

Multiple description coding of 3D geometry with forward error correction codes
Bici, M. Oguz; Norkin, Andrey; Akar, Gözde; Gotchev, Atanas; Astola, Jaakko (2007-05-09)
This work presents a multiple description coding (MDC) scheme for compressed three dimensional (3D) meshes based on forward error correction (FEC). It allows flexible allocation of coding redundancy for reliable transmission over error-prone channels. The proposed scheme is based on progressive geometry compression, which is performed by using wavelet transform and modified SPIHT algorithm. The proposed algorithm is optimized for varying packet loss rates (PLR) and channel bandwidth. Modeling distortion-rat...
VERTEX PARTITIONING BASED MULTIPLE DESCRIPTION CODING OF 3D DYNAMIC MESHES
Bici, M. Oguz; Stefanoski, Nikolce; Akar, Gözde (2009-05-06)
In this paper, we propose a Multiple Description Coding (MDC) method for reliable transmission of compressed time consistent 3D dynamic meshes. It trades off reconstruction quality for error resilience to provide the best expected reconstruction of 3D mesh sequence at the decoder side. The method is based on partitioning the mesh vertices into two sets and encoding each set independently by a 3D dynamic mesh coder. The encoded independent bitstreams or so-called descriptions are transmitted independently. T...
Piecewise-planar 3D reconstruction in rate-distortion sense
Imre, Evren; Gueduekbay, Ugur; Alatan, Abdullah Aydın (2007-05-09)
In this paper, a novel rate-distortion optimization inspired 3D piecewise-planar reconstruction algorithm is proposed. The algorithm refines a coarse 3D triangular mesh, by inserting vertices in a way to minimize the intensity difference between an image and its prediction. The preliminary experiments on synthetic and real data indicate the validity of the proposed approach.
Multiple description coding of animated meshes
Bici, M. Oguz; Akar, Gözde (Elsevier BV, 2010-11-01)
In this paper, we propose three novel multiple description coding (MDC) methods for reliable transmission of compressed animated meshes represented by series of 3D static meshes with same connectivity. The proposed methods trade off reconstruction quality for error resilience to provide the best expected reconstruction of 3D mesh sequence at the decoder side. The methods are based on layer duplication and partitioning of the set of vertices of a scalable coded animated mesh by either spatial or temporal sub...
Dense depth map estimation for multiple view coding
Ozkalayci, Burak; Alatan, Abdullah Aydın (2006-01-01)
In this paper the basics of a proposed method that handles the stereo and especially multiple view coding problem in a geometrical way, are explained. For this purpose, estimation of the depth maps of the multiple views, captured by fully calibrated cameras, are done. In depth map estimation problem Markov Random Field modelling is used to have a depth map in a desired smoothness and in an efficient coding fashion. The geometric structure which is acquired by the depth map estimation, is used to reconstruct...
Citation Formats
A. Norkin, M. O. Bici, G. Bozdağı Akar, A. Gotchev, and J. Astola, “Wavelet-based multiple description coding of 3-D geometry,” pp. 0–0, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68093.