Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Optimal Array size for Multiuser MIMO
Date
2018-06-29
Author
Hameed, Khalid W.
Noras, James M.
Radwan, Ayman
Al-Turjman, Fadi
Rodriguez, Jonathan
Abd-Alhameed, Raed A.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
228
views
0
downloads
Cite This
This paper investigates the optimal number of antennas at a base station, in contrast to what has been accepted in the past: that increasing the number of antennas at base station always enhances performance. In this study, we show that increasing the number of antennas does not always improve the desired performance. Additionally, such increase in antennas consumes more power in transmission and adds to the computation complexity, which in turn needs more time and is more difficult to implement. The optimum number of antennas has been evaluated using simulations. The simulation results show that the optimal ratio equals to 1.2 times the number of active users in each time frame.
Subject Keywords
MU-MIMO
,
Optimal antenna number
URI
https://hdl.handle.net/11511/68289
Conference Name
4th IEEE International Wireless Communications and Mobile Computing Conference (IWCMC)
Collections
Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Modified neural multiple source tracking algorithm in the presence of mutual coupling
Caylar, Selcuk; Leblebicioğlu, Mehmet Kemal; Dural, Guelbin (2007-06-15)
In smart antenna systems, mutual coupling between elements can significantly degrade the processing algorithms [1]. In this paper mutual coupling effects on Modified Neural Multiple Source Tracking Algorithm (MN-MUST) has been studied. MN-MUST algorithm applied to the Uniform Circular Array (UCA) geometry for the first time. The validity of MN-MUST algorithm in the presence of mutual coupling has been proved for both Uniform Linear Array (ULA) and UCA. Simulation results of MN-MUST algorithm are provided fo...
Active vibration control of beam and plates by using piezoelectric patch actuators
Lüleci, İbrahim Furkan; Özgüven, Hasan Nevzat; Department of Mechanical Engineering (2013)
Conformal airborne antennas have several advantages compared to externally mounted antennas, and they will play an important role in future aircrafts. However, they are subjected to vibration induced deformations which degrade their electromagnetic performances. With the motivation of suppressing such vibrations, use of active vibration control techniques with piezoelectric actuators is investigated in this study. At first, it is aimed to control the first three bending modes of a cantilever beam. In this s...
Reconfigurable Reflectarrays: Design, Analysis and Fabrication
Aydın Çivi, Hatice Özlem (2015-05-17)
Reflectarray antennas combine the advantages of both reflector and phased array antennas. Therefore, they offer low-loss, low-cost solutions for the high gain, beam steering and beam shaping applications. First the current progress and future perspectives regarding the design and analysis of reflectarrays are discussed. Then, recent technological developments and techniques that are used to realize reconfigurability in reflectarrays are presented.
Massive MIMO Channel Estimation With an Untrained Deep Neural Network
Balevi, Eren; Doshi, Akash; Andrews, Jeffrey G. (2020-03-01)
This paper proposes a deep learning-based channel estimation method for multi-cell interference-limited massive MIMO systems, in which base stations equipped with a large number of antennas serve multiple single-antenna users. The proposed estimator employs a specially designed deep neural network (DNN) based on the deep image prior (DIP) network to first denoise the received signal, followed by conventional least-squares (LS) estimation. We analytically prove that our LS-type deep channel estimator can app...
Wideband omnidirectional and sector coverage antenna arrays for base stations
Alatan, Lale (2018-01-01)
By using parallel strip line fed printed dipole antennas as array elements, an omnidirectional antenna array and a wide angle sector coverage array operating in octave band are designed. A maximum deviation of ±1.25 dB from the omnidirectional pattern is achieved for the omnidirectional array, and the average gain of the antenna was measured as being 5 dB in the 1.35–2.7GHz band. For the sector coverage array, a special reflector design is utilized to maintain a half power beam width of around 115◦ with a s...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. W. Hameed, J. M. Noras, A. Radwan, F. Al-Turjman, J. Rodriguez, and R. A. Abd-Alhameed, “Optimal Array size for Multiuser MIMO,” Limassol, Cyprus, 2018, p. 1296, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68289.