Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effect of Magnesium and Osteoblast Cell Presence on Hydroxyapatite Formation on (Ti,Mg)N Thin Film Coatings
Date
2017-07-01
Author
Onder, Sakip
Calikoglu-Koyuncu, Ayse Ceren
Kose, Gamze Torun
Kazmanli, Kursat
Kök, Fatma Neşe
Urgen, Mustafa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
354
views
0
downloads
Cite This
TiN and (Ti,Mg)N thin film coatings were deposited on Ti substrates by an arc-physical vapor deposition technique. The effect of cell presence on hydroxyapatite (HA) formation was investigated using surfaces with four different Mg contents (0, 8.1, 11.31, and 28.49 at.%). Accelerated corrosion above 10 at.% Mg had a negative effect on the performance in terms of both cell proliferation and mineralization. In the absence of cells, Mg-free TiN coatings and low-Mg (8.1 at.%)-doped (Ti,Mg)N surfaces led to an early HA deposition (after 7 days and 14 days, respectively) in cell culture medium (DMEM), but the crystallinity was low. More crystalline HA structures were obtained in the presence of the cells. HA deposits with an ideal Ca/P ratio were obtained at least a week earlier, at day 14, in TiN and low-Mg (8.1 at.%)-doped (Ti,Mg)N compared with that of high-Mg-containing surfaces (> 10 at.%). A thicker mineralized matrix was formed on low-Mg (8.1 at.%)-doped (Ti,Mg)N relative to that of the TiN sample. Low-Mg doping (< 10 at.%) into TiN coatings resulted in better cell proliferation and thicker mineralized matrix formation, so it could be a promising alternative for hard tissue applications.
Subject Keywords
General Engineering
,
General Materials Science
URI
https://hdl.handle.net/11511/68327
Journal
JOM
DOI
https://doi.org/10.1007/s11837-016-2029-4
Collections
Biomaterials and Tissue Engineering Application and Research Center (BİOMATEN), Article
Suggestions
OpenMETU
Core
Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires
Ozdemir, Baris; Kulakci, Mustafa; Turan, Raşit; Ünalan, Hüsnü Emrah (IOP Publishing, 2011-04-15)
Vertically aligned silicon nanowire (Si NW) arrays have been fabricated over large areas using an electroless etching (EE) method, which involves etching of silicon wafers in a silver nitrate and hydrofluoric acid based solution. A detailed parametric study determining the relationship between nanowire morphology and time, temperature, solution concentration and starting wafer characteristics (doping type, resistivity, crystallographic orientation) is presented. The as-fabricated Si NW arrays were analyzed ...
AN EXPERIMENTAL INVESTIGATION OF POLYVINYL-CHLORIDE) EMULSION POLYMERIZATION - EFFECT OF INITIATOR AND EMULSIFIER CONCENTRATIONS ON POLYMERIZATION KINETICS AND PRODUCT PARTICLE-SIZE
Karakaş, Gürkan (Wiley, 1989-01-01)
Effects of concentration changes in initiator species Na2SO3, (NH4)2S2O8 and CuSO4, and emulsifier, ammonium stearate, on poly(vinyl chloride) (PVC) emulsion polymerization kinetics and on product particle size were experimentally investigated. It was observed that to obtain industrially significant rates and overall conversions, not only an optimum concentration ratio of Na2SO3/(NH4)2S2O8/CuSO 4 must be used, but also the concentrations of these species must be above certain limits. Increasing the concentr...
Effect of thermal neutron irradiation on the elastic constants of tourmaline
Özkan, H. (Informa UK Limited, 1987-2)
The effect of thermal neutron irradiation due to the B10(n, α)Li7 reaction on the elastic wave velocities and the elastic moduli of tourmaline crystals has been studied. Oriented tourmaline samples have been irradiated with thermal neutrons to 7.6 × 1018n/cm2 and the elastic wave velocities determined by ultrasonic measurements. The elastic wave velocities are not affected by thermal neutron irradiation below 8 × 10l7n/cm2, effects starting to appear at approximately 1 × l018n/cm2 with more important decrea...
PREPARATION OF BLOCK-COPOLYMERS WITH MACROAZONITRILES AS THE INITIATOR
YURUK, H; ULUPINAR, S (Wiley, 1993-12-01)
Block copolymers containing poly(ethylene oxide) or poly(propylene oxide) prepolymer segments and methyl methacrylate were prepared. A stepwise procedure was first employed to prepare macro-azocarbamates by capping hydroxy-terminated poly(ethylene oxide) or poly(propylene oxide) with 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate and subsequently reacting this intermediate with 4,4'-azobis(4-cyano-n-pentanol)**. The resulting polymeric azocarbamates were used as free-radical initiators for the poly...
A novel experimental and density functional theory study on palladium and nitrogen doped few layer graphene surface towards glucose adsorption and electrooxidation
Caglar, Aykut; Duzenli, Derya; Önal, Işık; Tezsevin, Ilker; Sahin, Ozlem; Demir Kıvrak, Hilal (Elsevier BV, 2021-03-01)
At present, few layer graphene (G) and nitrogen doped few layer graphene (N doped-G) are firstly coated on Cu foil via chemical vapor deposition (CVD) method and G and N doped-G coated Cu foil is transferred to the indium tin oxide (ITO) substrate surface to obtain electrodes. Pd metal is electrodeposited onto the N doped-G/ITO electrode (Pd-N doped-G/ITO). Pd-N doped-G/ITO electrode are characterized with advanced surface characterization methods such as Raman spectroscopy and SEM-EDX. Characterization res...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Onder, A. C. Calikoglu-Koyuncu, G. T. Kose, K. Kazmanli, F. N. Kök, and M. Urgen, “Effect of Magnesium and Osteoblast Cell Presence on Hydroxyapatite Formation on (Ti,Mg)N Thin Film Coatings,”
JOM
, pp. 1195–1205, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68327.