Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Environmental sustainability assessment using dynamic Autoregressive-Distributed Lag simulations-Nexus between greenhouse gas emissions, biomass energy, food and economic growth
Date
2019-06-10
Author
Sarkodie, Samuel Asumadu
Strezov, Vladimir
Weldekidan, Haftom
Asamoah, Ernest Frimpong
Owusu, Phebe Asantewaa
Doyi, Israel Nutifafa Yawo
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
246
views
0
downloads
Cite This
Increasing population demand has triggered the enhancement of food production, energy consumption and economic development, however, its impact on climate change has become a global concern. This study applied a novel environmental sustainability assessment tool using dynamic Autoregressive-Distributed Lag (ARDL) simulations for model estimation of the relationships between greenhouse gas (GHG) emissions, energy, biomass, food and economic growth for Australia using data spanning from 1970 to 2017. The study found an inversed-U shaped relationship between energy consumption and income level, showing a decarbonized and services economy, hence, improved energy efficiency. While energy consumption increases emissions by 0.4 to 2.8%, biomass consumption supports Australia's transition to a decarbonized economy by reducing GHG emissions by 0.13% and shifts the demand for fossil fuel. Food and energy consumption underpin socio-economic development and vice versa. However, food waste from production and consumption increases ecological footprint, implying a lost opportunity to improve food security and reduce environmental pressure from agricultural production. There is no single path to achieving environmental sustainability, nonetheless, the integrated approach applied in this study reveals conceptual tools which are applicable for decision making.
Subject Keywords
Environmental Engineering
,
Waste Management and Disposal
,
Pollution
,
Environmental Chemistry
URI
https://hdl.handle.net/11511/68330
Journal
SCIENCE OF THE TOTAL ENVIRONMENT
DOI
https://doi.org/10.1016/j.scitotenv.2019.02.432
Collections
Engineering, Article
Suggestions
OpenMETU
Core
Emission sources and full spectrum of health impacts of black carbon associated polycyclic aromatic hydrocarbons (PAHs) in urban environment: A review
Ali, Muhammad Ubaid; Siyi, Lin; Yousaf, Balal; Abbas, Qumber; Hameed, Rashida; Zheng, Chunmiao; Kuang, Xingxing; Wong, Ming Hung (Informa UK Limited, 2020-03-19)
With increased urbanization and industrialization, the global burden of anthropogenic emissions through biomass and fossil fuel combustion has increased significantly, threatening the global climate system, air quality and human health. Half of the aerosol particles emitted as a result of combustion are in the form of black carbon (BC), co-emitted with polycyclic aromatic hydrocarbons (PAHs). Due to strong sorption efficiency, BC act as a carrier for highly toxic and carcinogenic PAHs in air, water and soil...
Managing aquatic ecosystems and water resources under multiple stress - An introduction to the MARS project
Hering, Daniel; Carvalho, Laurence; Argillier, Christine; Beklioğlu, Meryem; Borja, Angel; Cardoso, Ana Cristina; Duel, Harm; Ferreira, Teresa; Globevnik, Lidija; Hanganu, Jenica; Hellsten, Seppo; Jeppesen, Erik; Kodes, Vit; Solheim, Anne Lyche; Noges, Tiina; Ormerod, Steve; Panagopoulos, Yiannis; Schmutz, Stefan; Venohr, Markus; Birk, Sebastian (Elsevier BV, 2015-01-15)
Water resources globally are affected by a complex mixture of stressors resulting from a range of drivers, including urban and agricultural land use, hydropower generation and climate change. Understanding how stressors interfere and impact upon ecological status and ecosystem services is essential for developing effective River Basin Management Plans and shaping future environmental policy. This paper details the nature of these problems for Europe's water resources and the need to find solutions at a rang...
Quantifying the effects of climate change on hydrological regime and stream biota in a groundwater-dominated catchment: A modelling approach combining SWAT-MODFLOW with flow-biota empirical models
Liu, Wei; Bailey, Ryan T.; Andersen, Hans Estrup; Jeppesen, Erik; Nielsen, Anders; Peng, Kai; Molina-Navarro, Eugenio; Park, Seonggyu; Thodsen, Hans; Trolle, Dennis (Elsevier BV, 2020-11-01)
Climate change may affect stream ecosystems through flow regime alterations, which can be particularly complex in streams with a significant groundwater contribution. To quantify the impacts of climate change on hydrological regime and subsequently the stream biota, we linked SWAT-MODFLOW (A model coupling the Soil and Water Assessment Tool and the Modular Finite-difference Flow Model) with flow-biota empirical models that included indices for three key biological taxonomic identities (fish, macroinvertebra...
Climate Change Effects on Runoff, Catchment Phosphorus Loading and Lake Ecological State, and Potential Adaptations
Jeppesen, Erik; Kronvang, Brian; Meerhoff, Mariana; Sondergaard, Martin; Hansen, Kristina M.; Andersen, Hans E.; Lauridsen, Torben L.; Liboriussen, Lone; Beklioğlu, Meryem; Ozen, Arda; Olesen, Jorgen E. (Wiley, 2009-09-01)
Climate change may have profound effects on phosphorus (P) transport in streams and on take eutrophication. Phosphorus loading from land to streams is expected to increase in northern temperate coastal regions due to higher winter rainfall and to a decline in warm temperate and and climates. Model results suggest a 3.3 to 16.5% increase within the next 100 yr in the P loading of Danish streams depending on soil type and region. In takes, higher eutrophication can be expected, reinforced by temperature-media...
Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake Beysehir
Bucak, Tuba; Trolle, Dennis; Tavsanoglu, U. Nihan; Cakiroglu, A. Idil; Ozen, Arda; Jeppesen, Erik; Beklioğlu, Meryem (Elsevier BV, 2018-04-15)
Climate change and intense land use practices are the main threats to ecosystem structure and services of Mediterranean lakes. Therefore, it is essential to predict the future changes and develop mitigation measures to combat such pressures. In this study, Lake Beysehir, the largest freshwater lake in the Mediterranean basin, was selected to study the impacts of climate change and various land use scenarios on the ecosystem dynamics of Mediterranean freshwater ecosystems and the services that they provide. ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. A. Sarkodie, V. Strezov, H. Weldekidan, E. F. Asamoah, P. A. Owusu, and I. N. Y. Doyi, “Environmental sustainability assessment using dynamic Autoregressive-Distributed Lag simulations-Nexus between greenhouse gas emissions, biomass energy, food and economic growth,”
SCIENCE OF THE TOTAL ENVIRONMENT
, pp. 318–332, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68330.