Climate Change Effects on Runoff, Catchment Phosphorus Loading and Lake Ecological State, and Potential Adaptations

Jeppesen, Erik
Kronvang, Brian
Meerhoff, Mariana
Sondergaard, Martin
Hansen, Kristina M.
Andersen, Hans E.
Lauridsen, Torben L.
Liboriussen, Lone
Beklioğlu, Meryem
Ozen, Arda
Olesen, Jorgen E.
Climate change may have profound effects on phosphorus (P) transport in streams and on take eutrophication. Phosphorus loading from land to streams is expected to increase in northern temperate coastal regions due to higher winter rainfall and to a decline in warm temperate and and climates. Model results suggest a 3.3 to 16.5% increase within the next 100 yr in the P loading of Danish streams depending on soil type and region. In takes, higher eutrophication can be expected, reinforced by temperature-mediated higher P release from the sediment. Furthermore, a shift in fish community structure toward small and abundant plankti-benthivorous fish enhances predator control of zooplankton, resulting in higher phytoplankton biomass. Data from Danish lakes indicate increased chlorophyll a and phytoplankion biomass, higher dominance of dinophytes and cyanobacteria (most notably of nitrogen fixing forms), but lower abundance of diatoms and chrysophytes, reduced size of copepods and cladocerans, and a tendency to reduced zooplankton biomass and zooplankton:phytoplankton biomass ratio when lakes warm. Higher P concentrations are also seen in warm and lakes despite reduced external loading due to increased evapotranspiration and reduced inflow. Therefore, the critical loading for good ecological state in lakes has to be lowered in a future warmer climate. This calls for adaptation measures, which in the northern temperate zone should include improved P cycling in agriculture, reduced loading from point sources, and (re)-establishment of wetlands and riparian buffer zones. In the arid Southern Europe, restrictions on human use of water are also needed, not least on irrigation.


Quantifying the effects of climate change on hydrological regime and stream biota in a groundwater-dominated catchment: A modelling approach combining SWAT-MODFLOW with flow-biota empirical models
Liu, Wei; Bailey, Ryan T.; Andersen, Hans Estrup; Jeppesen, Erik; Nielsen, Anders; Peng, Kai; Molina-Navarro, Eugenio; Park, Seonggyu; Thodsen, Hans; Trolle, Dennis (Elsevier BV, 2020-11-01)
Climate change may affect stream ecosystems through flow regime alterations, which can be particularly complex in streams with a significant groundwater contribution. To quantify the impacts of climate change on hydrological regime and subsequently the stream biota, we linked SWAT-MODFLOW (A model coupling the Soil and Water Assessment Tool and the Modular Finite-difference Flow Model) with flow-biota empirical models that included indices for three key biological taxonomic identities (fish, macroinvertebra...
Emission sources and full spectrum of health impacts of black carbon associated polycyclic aromatic hydrocarbons (PAHs) in urban environment: A review
Ali, Muhammad Ubaid; Siyi, Lin; Yousaf, Balal; Abbas, Qumber; Hameed, Rashida; Zheng, Chunmiao; Kuang, Xingxing; Wong, Ming Hung (Informa UK Limited, 2020-03-19)
With increased urbanization and industrialization, the global burden of anthropogenic emissions through biomass and fossil fuel combustion has increased significantly, threatening the global climate system, air quality and human health. Half of the aerosol particles emitted as a result of combustion are in the form of black carbon (BC), co-emitted with polycyclic aromatic hydrocarbons (PAHs). Due to strong sorption efficiency, BC act as a carrier for highly toxic and carcinogenic PAHs in air, water and soil...
Environmental sustainability assessment using dynamic Autoregressive-Distributed Lag simulations-Nexus between greenhouse gas emissions, biomass energy, food and economic growth
Sarkodie, Samuel Asumadu; Strezov, Vladimir; Weldekidan, Haftom; Asamoah, Ernest Frimpong; Owusu, Phebe Asantewaa; Doyi, Israel Nutifafa Yawo (Elsevier BV, 2019-06-10)
Increasing population demand has triggered the enhancement of food production, energy consumption and economic development, however, its impact on climate change has become a global concern. This study applied a novel environmental sustainability assessment tool using dynamic Autoregressive-Distributed Lag (ARDL) simulations for model estimation of the relationships between greenhouse gas (GHG) emissions, energy, biomass, food and economic growth for Australia using data spanning from 1970 to 2017. The stud...
CO2 emissions vs. CO2 responsibility: An input-output approach for the Turkish economy
Tunç, Gül İpek; Akbostancı Özkazanç, Elif (Elsevier BV, 2007-02-01)
Recently, global warming (greenhouse effect) and its effects have become one of the hottest topics in the world agenda. There have been several international attempts to reduce the negative effects of global warming. The Kyoto Protocol can be cited as the most important agreement which tries to limit the countries' emissions within a time horizon. For this reason, it becomes important to calculate the greenhouse gas emissions of countries. The aim of this study is to estimate the amount Of CO2-the most impo...
Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation
Jeppesen,Jeppesen, Erik,Erik; Kronvang, Brian; Olesen, Jorgen E.; Audet, Joachim; Sondergaard, Martin; Hoffmann, Carl C.; Andersen, Hans E.; Lauridsen, Torben L.; Liboriussen, Lone; Larsen, Soren E.; Beklioglu, Meryem; Meerhoff,Meerhoff, Mariana,Mariana; Özen, Arda; Özkan, Korhan (2011-03-01)
Climate change might have profound effects on the nitrogen (N) dynamics in the cultivated landscape as well as on N transport in streams and the eutrophication of lakes. N loading from land to streams is expected to increase in North European temperate lakes due to higher winter rainfall and changes in cropping patterns. Scenario (IPCC, A2) analyses using a number of models of various complexity for Danish streams and lakes suggest an increase in runoff and N transport on an annual basis (higher during wint...
Citation Formats
E. Jeppesen et al., “Climate Change Effects on Runoff, Catchment Phosphorus Loading and Lake Ecological State, and Potential Adaptations,” JOURNAL OF ENVIRONMENTAL QUALITY, pp. 1930–1941, 2009, Accessed: 00, 2020. [Online]. Available: