Enhanced Performance of Nanowire-Based All-TiO2 Solar Cells using Subnanometer-Thick Atomic Layer Deposited ZnO Embedded Layer

Ghobadi, Amir
Yavuz, Halil I.
Ulusoy, T. Gamze
Icli, K. Cagatay
Ozenbas, Macit
OKYAY, Ali Kemal
In this paper, the effect of angstrom-thick atomic layer deposited (ALD) ZnO embedded layer on photovoltaic (PV) performance of Nanowire-Based All-TiO2 solar cells has been systematically investigated. Our results indicate that by varying the thickness of ZnO layer the efficiency of the solar cell can be significantly changed. It is shown that the efficiency has its maximum for optimal thickness of 1 ALD cycle in which this ultrathin ZnO layer improves device performance through passivation of surface traps without hampering injection efficiency of photogenerated electrons. The mechanisms contributing to this unprecedented change in PV performance of the cell have been scrutinized and discussed.


Improved PEM fuel cell performance with hydrophobic catalyst layers
Avcioglu, Gokce S.; FIÇICILAR, BERKER; Eroğlu, İnci (2018-10-04)
Flooding of catalyst layers is one of the major issues, which effects performance of low temperature proton exchange membrane fuel cells (PEMFC). Rendering catalyst layers hydrophobic one may improve the performance of PEMFC depending on Pt percentage in the catalyst and Polytetrafluoroethylene (PTFE) loading on the electrode. In this study, effect of hydrophobicity in catalyst layers on performance has been investigated by comparing performances of membrane electrode assemblies prepared with 48% Pt/C. Ultr...
Optimization of Selective Electrophoretic Deposition and Isostatic Compression of Titania Nanoparticles for Flexible Dye-Sensitized Solar Cells
Kocaoglu, Bahadir Can; Icli, Kerem Cagatay; Özenbaş, Ahmet Macit (2016-04-01)
Flexible photoanodes on PEN/PET based substrates for dye-sensitized solar cells (DSSC) by using electrophoretic deposition (EPD) method for the formation of titania nanoporous layer with titania nanoparticles (P-25) were produced. Considering commercially available titania nanoparticles containing both anatase and rutile phases, the undesired rutile nanoparticles, for DSSC applications, were almost eliminated from the coatings by selective pH adjustment of the EPD solutions without any binders. The coating ...
High performance PEM fuel cell catalyst layers with hydrophobic channels
Avcioglu, Gokce S.; FIÇICILAR, BERKER; BAYRAKÇEKEN YURTCAN, Ayşe; Eroğlu, İnci (2015-06-29)
Polymer electrolyte membrane fuel cell performance has been enhanced with efficient water management by modification of the structure of the catalyst layer. Polytetrafluoroethylene (PTFE) was added to the catalyst layer structure by using two-step catalyst ink preparation method. Physical and electrochemical characterization of catalyst layers with hydrophobic nanoparticles were investigated via TGA-DTA, XRD, nitrogen physisorption, SEM, TEM, EDX analysis, and cyclic voltammetry technique. In addition, perf...
Maximizing the performance of single and multijunction MA and lead-free perovskite solar cell
Azadinia, M.; Ameri, Mohsen; Ghahrizjani, R.T.; Fathollahi, M. (2021-06-01)
Finding a highly stable and appropriate perovskite solar cell with optimum design parameters is crucial for being included as the top cell in tandem structure, with Si as the bottom cell, to realize the power conversion efficiencies (PCEs) over the limits imposed by Shockley-Queisser theory. Here, we quantize the performance of methylammonium (MA) and lead (Pb)-free all-inorganic cesium tin-germanium triiodide (CsSnxG1-xI3) by combining CsSnI3 (Eg = 1.31 eV) and CsGeI3 (Eg = 1.63 eV) perovskites for standal...
A Feasibility study for external control on self-organized production of plasmonic enhancement interfaces for solar cells
Zolfaghari Borra, Mona; Bek, Alpan; Ünalan, Hüsnü Emrah; Department of Micro and Nanotechnology (2013)
The present study is about the improvement of the energy conversion efficiency of solar cells in which plasmonic light-trapping approach has been investigated. In this study, metal nanoparticles are allowed to form in a self-organized fashion on both flat and textured full scale monocrystalline silicon solar cell. These metal nanoparticles with strong optical interaction cross-sections at localized plasmonic resonance energies, improve coupling of the incoming light into the active area of solar cells by wa...
Citation Formats
A. Ghobadi, H. I. Yavuz, T. G. Ulusoy, K. C. Icli, M. Ozenbas, and A. K. OKYAY, “Enhanced Performance of Nanowire-Based All-TiO2 Solar Cells using Subnanometer-Thick Atomic Layer Deposited ZnO Embedded Layer,” ELECTROCHIMICA ACTA, pp. 23–30, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68350.