Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Energy-Aware Data Delivery Framework for Safety-Oriented Mobile IoT
Date
2018-01-01
Author
Al-Turjman, Fadi
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
257
views
0
downloads
Cite This
The proliferation of wireless multimedia sensor networks has given rise to intelligent transportation systems as a mobile data-sharing model. This vision can be extended under the umbrella of the mobile Internet of Things to include versatile resources, such as smartphones, radio frequency identification tags, and sensors on roads that can be utilized in emergency situations. The facilitation of such a vision faces key challenges in terms of interoperability, resource management and energy consumption. In this paper, we propose agile data delivery framework that caters for service-based applications in smart cities where multimedia data is heavily exchanged. Optimized routing approach that operates with limited resources in highly dynamic topologies is investigated and recommended. This approach assists in specifying which path a data packet should follow in order to determine the optimal usage of the available resources while satisfying QoS constraints for a wide range of real-time multimedia applications in safety and security fields. Simulation results, which have been validated via solid analytical analysis, are used to assess and outline the efficiency of the proposed approach in terms of system throughput, energy consumption, and average end-to-end delay against other similar approaches in the literature
Subject Keywords
Routing
,
Quality of service (QoS)
,
Wireless multimedia sensor networks
,
Intelligent transportation systems
URI
https://hdl.handle.net/11511/63839
Journal
IEEE SENSORS JOURNAL
DOI
https://doi.org/10.1109/jsen.2017.2761396
Collections
Department of Computer Engineering, Article
Suggestions
OpenMETU
Core
A Survey on Multipath Routing Protocols for QoS Assurances in Real-Time Wireless Multimedia Sensor Networks
Hasan, Mohammed Zaki; Al-Rizzo, Hussain; Al-Turjman, Fadi (2017-01-01)
The vision of wireless multimedia sensor networks (WMSNs) is to provide real-time multimedia applications using wireless sensors deployed for long-term usage. Quality of service assurances for both best effort data and real-time multimedia applications introduced new challenges in prioritizing multipath routing protocols in WMSNs. Multipath routing approaches with multiple constraints have received considerable research interest. In this paper, a comprehensive survey of both best effort data and real-time m...
UAV-Driven Sustainable and Quality-Aware Data Collection in Robotic Wireless Sensor Networks
Gül, Ömer Melih; Erkmen, Aydan Müşerref; Kantarci, Burak (2022-01-01)
Energy-aware data collection is of paramount importance for robotic and wireless sensor networks. Although static sink-aided cluster-based protocols provide energy-efficient solutions, UAV-aided approaches can be considered as better alternatives to reduce energy consumption while data acquisition compared with static sinks. Most of the existing UAV-driven solutions have not considered a limit on battery capacity of the UAV, which needs to be considered in a practical manner. This paper investigates energy-...
Packet Arrival Analysis in Wireless Sensor Networks
Doddapaneni, Krishna; Shah, Purav; Ever, Enver; Tasiran, Ali; Omondi, Fredrick A.; Mostarda, Leonardo; Gemikonakli, Orhan (2015-03-27)
Distributed sensor networks have been discussed for more than 30 years, but the vision of Wireless Sensor Networks (WSNs) has been brought into reality only by the rapid advancements in the areas of sensor design, information technologies, and wireless networks that have paved the way for the proliferation of WSNs. The unique characteristics of sensor networks introduce new challenges, amongst which prolonging the sensor lifetime is the most important. WSNs have seen a tremendous growth in various applicati...
Mobile traffic modelling for wireless multimedia sensor networks in IoT
Al-Turjman, Fadi; Radwan, Ayman; Mumtaz, Shahid; Rodriguez, Jonathan (2017-11-01)
Wireless sensor networks suffer from some limitations such as energy constraints and the cooperative demands essential to perform multi-hop geographic routing for real-time applications. Quality of Service (QoS) depends to a great extent on offering participating nodes an incentive for collaborating. In this paper, we present a novel traffic model for a new-generation of sensor networks that supports a wide range of communication-intensive real-time multimedia applications. The model is used to investigate ...
Path planning and localization for mobile anchor based wireless sensor networks
Erdemir, Ecenaz; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2017)
In wireless sensor networks, sensors with limited resources are distributed in a wide area. Localizing the sensors is an important problem. Anchor nodes with known positions are used for sensor localization. A simple and efficient way of generating anchor nodes is to use mobile anchors which have built-in GPS units. In this thesis, a single mobile anchor is used to traverse the region of interest to communicate with the sensor nodes and identify their positions. Therefore planning the best trajectory for th...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Al-Turjman, “Energy-Aware Data Delivery Framework for Safety-Oriented Mobile IoT,”
IEEE SENSORS JOURNAL
, pp. 470–478, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63839.