Learning to Navigate Endoscopic Capsule Robots

2019-07-01
Turan, Mehmet
Almalioglu, Yasin
Gilbert, Hunter B.
Mahmood, Faisal
Durr, Nicholas J.
Araujo, Helder
Sari, Alp Eren
Ajay, Anurag
Sitti, Metin
Deep reinforcement learning (DRL) techniques have been successful in several domains, such as physical simulations, computer games, and simulated robotic tasks, yet the transfer of these successful learning concepts from simulations into the real world scenarios remains still a challenge. In this letter, a DRL approach is proposed to learn the continuous control of a magnetically actuated soft capsule endoscope (MASCE). Proposed controller approach can alleviate the need for tedious modeling of complex and highly nonlinear physical phenomena, such as magnetic interactions, robot body dynamics and tissue-robot interactions. Experiments performed in real ex-vivo porcine stomachs prove the successful control of the MASCE with trajectory tracking errors on the order of millimeter.
IEEE ROBOTICS AND AUTOMATION LETTERS

Suggestions

Key protected classification for collaborative learning
Sariyildiz, Mert Bulent; Cinbiş, Ramazan Gökberk; Ayday, Erman (Elsevier BV, 2020-08-01)
© 2020Large-scale datasets play a fundamental role in training deep learning models. However, dataset collection is difficult in domains that involve sensitive information. Collaborative learning techniques provide a privacy-preserving solution, by enabling training over a number of private datasets that are not shared by their owners. However, recently, it has been shown that the existing collaborative learning frameworks are vulnerable to an active adversary that runs a generative adversarial network (GAN...
Feature Detection Performance Based Benchmarking of Motion Deblurring Methods: Applications to Vision for Legged Robots
Gultekin, Gokhan Koray; Saranlı, Afşar (Elsevier BV, 2019-02-01)
Dexterous legged robots can move on variable terrain at high speeds. The locomotion of these legged platforms on such terrain causes severe oscillations of the robot body depending on the surface and locomotion speed. Camera sensors mounted on such platforms experience the same disturbances, hence resulting in motion blur. This is a particular corruption of the image and results in information loss further resulting in degradation or loss of important image features. Although motion blur is a significant pr...
Using learned affordances for robotic behavior development
Doğar, Mehmet Remzi; Şahin, Erol; Department of Civil Engineering (2007)
“Developmental robotics” proposes that, instead of trying to build a robot that shows intelligence once and for all, what one must do is to build robots that can develop. A robot should go through cognitive development just like an animal baby does. These robots should be equipped with behaviors that are simple but enough to bootstrap the system. Then, as the robot interacts with its environment, it should display increasingly complex behaviors. Studies in developmental psychology and neurophysiology provid...
On the analysis of deep convolutional neural networks applied to building detection in satellite images
Karagöz, Batuhan; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2015)
Deep Learning has gained much interest recently, probably induced by the re- quirements to learn more complex and abstract concepts. As concepts to be learned become more abstract, their regions in the raw input space also become highly variational. In many cases, shallow architectures fail to learn highly varia- tional functions. One area of interest where concepts to be learned are complex is remote sensing. In this thesis, performance and suitability of deep architectures for recognition of building patc...
A mathematical contribution of statistical learning and continuous optimization using infinite and semi-infinite programming to computational statistics
Özöğür-Akyüz, Süreyya; Weber, Gerhard Wilhelm; Department of Scientific Computing (2009)
A subfield of artificial intelligence, machine learning (ML), is concerned with the development of algorithms that allow computers to “learn”. ML is the process of training a system with large number of examples, extracting rules and finding patterns in order to make predictions on new data points (examples). The most common machine learning schemes are supervised, semi-supervised, unsupervised and reinforcement learning. These schemes apply to natural language processing, search engines, medical diagnosis,...
Citation Formats
M. Turan et al., “Learning to Navigate Endoscopic Capsule Robots,” IEEE ROBOTICS AND AUTOMATION LETTERS, pp. 3075–3082, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68516.