Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Marine Algae-PLA composites as de novo alternative to porcine derived collagen membranes
Date
2020-09-01
Author
Sayin, S.
Kohlhaas, T.
Veziroglu, S.
Okudan, E. S.
Naz, M.
Schroeder, S.
Saygili, E.
Acil, Y.
Faupel, F.
Wiltfang, J.
Aktas, O. C.
Guelses, A.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
253
views
0
downloads
Cite This
Resorbable and volume-stable collagen matrices have been preferred as grafting materials for diverse clinical applications in recent years. On the other hand, there is always an existing risk of transmission of infection with the cells or the tissues of the graft in using such collagen matrices. Moreover, considering the economic aspects, there is also a need for cost-efficient alternative materials. In this sense, marine algae can be considered as alternatives since they represent vast and cheap source of potential biopolymers. This work covers a comprehensive cytocompatibility study of composite biopolymers derived from different types of marine algae.
Subject Keywords
Marine algae
,
Biopolymers
,
Tissue engineering
,
Cytotoxicity
,
Graft materials
URI
https://hdl.handle.net/11511/68581
Journal
MATERIALS TODAY CHEMISTRY
DOI
https://doi.org/10.1016/j.mtchem.2020.100276
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Microfibrous scaffolds from poly(L-lactide-co-epsilon-caprolactone) blended with xeno-free collagen/hyaluronic acid for improvement of vascularization in tissue engineering applications
KENAR, HALİME; Ozdogan, Candan Yilmaz; Dumlu, Cansu; DOĞER, EMEK; Kose, Gamze Torun; Hasırcı, Vasıf Nejat (2019-04-01)
Success of 3D tissue substitutes in clinical applications depends on the presence of vascular networks in their structure. Accordingly, research in tissue engineering is focused on the stimulation of angiogenesis or generation of a vascular network in the scaffolds prior to implantation. A novel, xeno-free, collagen/hyaluronic acid-based poly(L-lactide-co-epsilon-caprolactone) (PLC/COL/HA) (20/9.5/0.5 w/w/w) microfibrous scaffold was produced by electrospinning. Collagen types I and III, and hyaluronic acid...
Contact mechanics of graded orthotropic coatings
Arslan, Onur; Aksel, Mehmet Haluk; Dağ, Serkan; Department of Mechanical Engineering (2015)
Analytic and computational studies are performed for contact problems of orthotropic functionally graded material (FGM) coatings which are bonded to isotropic homogeneous substrates without any interfacial defects. The orthotropic FGM coatings possess orhotrophic stiffness gradations through the coating thickness direction. The variations of each orthotropic stiffness constants are assumed to behave as exponential functions. In the analytical procedure, the problems of orthotropic graded coatings which are ...
Contact guidance enhances the quality of a tissue engineered corneal stroma
Vrana, E.; Builles, N.; Hindie, M.; Damour, O.; AYDINLI, ATİLLA; Hasırcı, Vasıf Nejat (2008-02-01)
Corneal stroma is a very complex structure, composed of 200 lamellae of oriented collagen fibers. This highly complex nature of cornea is known to be important for its transparency and mechanical integrity. Thus, an artificial cornea design has to take into account this complex structure. In this study, behavior of human corneal keratocytes on collagen films patterned with parallel channels was investigated. Keratocytes proliferated well on films and reached confluency after 7 days in the incubation medium....
Adsorption of blood proteins on glow-discharge-modified polyurethane membranes
Kayirhan, N; Denizli, A; Hasırcı, Nesrin (2001-08-08)
Polyurethanes are a class of polymers that have a wide range of applications in the medical field although their blood compatibility still needs improvement. In order to obtain medical purity, this study prepared membrane-form polyurethanes from toluene 2,4-diisocyanate (TDI) and poly(propylene ethylene glycol) without the addition of any ingredients such as solvents, catalysts, or chain extenders. The aim was to increase surface hydrophilicity and improve blood compatibility. Therefore, the prepared membra...
Free standing layer-by-layer films of polyethyleneimine and poly(l-lysine) for potential use in corneal stroma engineering
Altay, Gizem; Hasırcı, Vasıf Nejat; Khademhosseini, Ali; Department of Biomedical Engineering (2011)
In this study we fabricated free standing multilayer films of polyelectrolyte complexes for potential use in tissue engineering of corneal stroma by using the layer-by-layer (LbL) approach. In the formation of these LbL films negatively charged, photocrosslinkable (methacrylated) hyaluronic acid (MA-HA) was used along with polycations polyethyleneimine (PEI) and poly(L-lysine) (PLL). Type I collagen (Col) was blended in with PLL for improving the water absorption and cell attachment properties of the films....
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Sayin et al., “Marine Algae-PLA composites as de novo alternative to porcine derived collagen membranes,”
MATERIALS TODAY CHEMISTRY
, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68581.