Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Application of the universal expression for erosive burning to Nozzleless solid propellant Rocket motors
Date
2017-01-01
Author
Özer, Ali Can
Özyörük, Yusuf
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
287
views
0
downloads
Cite This
Integral Rocket Ramjet (IRR) type propulsion systems have many advantages over conventional solid rocket motors when used in tactical missile systems. Nozzleless boosters are one of the applicable concept choices for the system. The present approach includes performance prediction of nozzleless solid propellant rocket motors (SPRM). Quasi one dimensional internal ballistics model is constructed and solved numerically through inside the motor. To predict the burning rate, universal erosive burning rate relation developed by Mukunda and Paul [1] is used. The results of the numerical internal ballistics simulations are compared with the experimental nozzleless motor firing results found in literature. It has been demonstrated that numerical results are in good agreement with the experimental data in terms of chamber pressure and thrust.
URI
https://hdl.handle.net/11511/68834
DOI
https://doi.org/10.2514/6.2017-5084
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Performance prediction of nozzleless solid propellant rocket motors
Özer, Ali Can; Özyörük, Yusuf; Department of Aerospace Engineering (2015)
Integral rocket ramjet (IRR) type propulsion systems have many advantages over conventional solid rocket motors when used in tactical missile systems. Nozzleless boosters are one of the applicable concept choices for the system [1]. During the design and development phase of solid propellant rocket motors, simulation and prediction of behavior of a given motor by numerical tools is important in terms of decreasing the development duration and costs. The present approach includes performance prediction of no...
Analysis of 3-d grain burnback of solid propellant rocket motors and verification with rocket motor tests
Püskülcü, Gökay; Ulaş, Abdullah; Department of Mechanical Engineering (2004)
Solid propellant rocket motors are the most widely used propulsion systems for military applications that require high thrust to weight ratio for relatively short time intervals. Very wide range of magnitude and duration of the thrust can be obtained from solid propellant rocket motors by making some small changes at the design of the rocket motor. The most effective of these design criteria is the geometry of the solid propellant grain. So the most important step in designing the solid propellant rocket mo...
Comparison of Various Spring Analogy Mesh Deformation Techniques in 2 D Airfoil Design Optimization
Yang, Yosheph; Özgen, Serkan (null, 2015-06-29)
During the last few decades, CFD (Computational Fluid Dynamics) has developed greatly and has become a more reliable tool for the conceptual phase of aircraft design. This tool is generally combined with an optimization algorithm. In the optimization phase, the need for regenerating the computational mesh might become cumbersome, especially when the number of design parameters is high. For this reason, several mesh generation and deformation techniques have been developed in the past decades. One of the mos...
Experimental and numerical investigation of a jet vane of thrust vector control system
Söğütcü, Burak.; Perçin, Mustafa; Department of Aerospace Engineering (2019)
Thrust vectoring is generally used in tactical missile systems when attitude control with conventional control systems is inadequate. One of the most widely used thrust vectoring method is to employ jet vanes in the divergent section of the rocket motor nozzle to have the desired thrust vectoring. In the present study, the flow over the jet vane of a thrust vector control system is investigated using both numerical and experimental techniques. Three dimensional, unsteady and viscous flow over the jet vane i...
Experimental analysis on the measurement of ballistic properties of solid propellants
Cuerdaneli, S.; Ak, M. A.; Ulaş, Abdullah (2007-06-16)
Ballistic properties of solid propellants play an important role in the performance of the solid propellant rocket motors. Therefore, ballistic properties of a likely propellant should be known and provided to the design engineers. In this study, a specific AP/HTPB composite solid propellant (SCP) was examined to obtain steady-state linear burning rates as a function of pressure and propellant initial temperature, temperature sensitivity, and pressure deflagration limit (PDL). In some tests micro-thermocoup...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. C. Özer and Y. Özyörük, “Application of the universal expression for erosive burning to Nozzleless solid propellant Rocket motors,” 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68834.