Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Time domain simulations of radiation from ducted fans with liners
Date
2001-01-01
Author
Özyörük, Yusuf
Long, L.N.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
168
views
0
downloads
Cite This
Over the last few decades, noise related concerns have played a major role in the development of aircraft engines. The previously dominant jet noise mechanisms are now being replaced by tonal and broadband noise from the fan and interactions from the fan wakes and the downstream stator. Alternately, engine inlet and exhaust ducts are being fitted with sophisticated liner materials that aid in damping fan related noise. In this paper, the authors investigate the radiation problem from the engine inlets with the aid of numerical simulations of the Euler/Navier-Stokes equations coupled with a time-domain methodology that analyzes the impedance characteristics of liner materials. In doing so, the authors present a simulation capability that can be used to identify and analyze tonal noise from high bypass ratio engines with acoustically treated nacelles. In this paper, we carry out numerical experiments and present results of radiation from two different engine inlet geometries with lined ducts. © 2001 by the authors.
URI
https://hdl.handle.net/11511/68937
DOI
https://doi.org/10.2514/6.2001-2171
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Optimal trajectory generation and tracking for a helicopter in tail rotor failure
Arslan, Yusuf Onur; Yavrucuk, İlkay; Department of Aerospace Engineering (2022-8-23)
Tail rotor failure is the main reason for a variety of helicopter accidents throughout aviation history. It is troublesome to control and navigate the helicopter to a predefined landing point with a non-functioning tail rotor especially if the number of available landing sites is limited. The objective of this thesis is to generate flight trajectories for a helicopter with a failed tail rotor and to track the trajectories by a controller. In this work, the generic helicopter model in FLIGHTLAB software is u...
Wave drag optimization of high speed aircraft
Çıtak, Can; Özgen, Serkan; Department of Aerospace Engineering (2015)
Supersonic flight has been the subject of the last half century. Both military and civil projects have been running on to design aircraft that will fly faster than the speed of sound. Developing technology and increasing experience leads to faster, more fuel – efficient, longer ranged aircraft designs. These vehicles have the advantage of shortening travelling times in the civilian role and performing missions with greater success in the military role. Aerodynamic design is the main argument of high speed a...
Ice Accretion Prediction on Engine Nacelles in Liquid Phase Clouds
Özgen, Serkan; Görgülü, İlhan; Tatar, Volkan (null; 2015-09-22)
More than a hundred in-flight incidences have been reported in the last two decades related to icing on aircraft engine components including rollbacks, mechanical failure and flameouts [1, 2]. Thus, in-flight ice accretion on aircraft engine components and nacelles has been attracting more interest, especially from the airworthiness certification point of view. Computer simulations as well as ground and flight tests are among the means of compliance for airworthiness certification related to safe flight in ...
Structured H-Infinity controller design and analysis for highly maneuverable jet aircraft
Özkan, Salih Volkan; Tekinalp, Ozan; Department of Aerospace Engineering (2022-2-10)
Robust control technique is utilized to develop flight control laws for highly maneuverable aircraft. A structured H-Infinity controller is used to optimize the gains of the proposed control algorithm. For this purpose systune algorithm available in Matlab is employed to successfully obtain the controller gains satisfying selected design requirements. Designed control laws are evaluated according to these requirements and validation of the methodology is presented.
FREQUENCY-DOMAIN SYSTEM IDENTIFICATION OF F-16 LONGITUDINAL DYNAMICS
Ergazi, Nazife Ege; Yavrucuk, İlkay; Gürsoy, Gönenç; Department of Aerospace Engineering (2022-3-10)
The longitudinal dynamics of F-16 aircraft in a level trim, unaccelerated flight are identified using frequency-domain system identification techniques. The nonlinear system is excited by sine sweep elevator input, and angle of attack and pitch rate responses are collected. Detrending and windowing are applied to time-domain data and are converted to the frequency-domain by applying Fast Fourier Transform (FFT). The smooth spectral estimates are found from the transformed data, allowing frequency responses ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. Özyörük and L. N. Long, “Time domain simulations of radiation from ducted fans with liners,” 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68937.