Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Fully transient conjugate analysis of silica-phenolic charing ablation coupled with interior ballistics
Date
2019-01-01
Author
Alanyalıoğlu, Çetin Ozan
Özyörük, Yusuf
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
256
views
0
downloads
Cite This
© 2019, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Due to its excellent insulation capability, usage of silica-phenolic charring ablator as nozzle liner is a common practice in solid rocket motor industry. During the design of a solid rocket motor employing silica-phenolic as nozzle liner, it is desired to conduct an accurate analysis yielding in-depth thermal response and recession characteristics. As the interior ballistics and nozzle recession rate mutually interact, best practice is to perform a coupled solution to both. Commonly used one-dimensional analysis tools with empirical approaches for estimation of convective heat transfer rate and blowing effect generally lack sought accuracy, and do not model the transient shape-change phenomena, which affects the nozzle performance. This work provides governing equations for charring, including pyrolysis gas injection and surface energy balance for melting ablation, along with a boundary condition governed by interior ballistics, and implements all these numerically into the commercial CFD solver FLUENT. Also, results from a static firing test conducted with a small scale ballistic evaluation motor employing a silica-phenolic nozzle insert are provided. Results from both investigations are compared and discussed. It is demonstrated that the implementation captures all the relevant physical phenomena.
URI
https://hdl.handle.net/11511/69330
DOI
https://doi.org/10.2514/6.2019-3958
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Computational fluid dynamics and proper orthogonal decomposition based control of flow over supersonic cavities
Gelisli, Kubra Asena; Aradag, Selin; Tascioglu, Yigit; Özer, Mehmet Bülent (2019-01-01)
© 2019, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.A Computational Fluid Dynamics (CFD) study is conducted to investigate the unsteady, turbulent supersonic cavity flow characteristics and to control the severe effects of the flow field. Simulations of Mach 1.5 supersonic cavity flow with a length to depth ratio of 5.07 are performed using commercial ANSYS Fluent solver. Unsteady density-based Reynolds Averaged Navier-Stokes equations are modeled with standard k-ω turb...
Experimental design and statistical modeling methodology for wind tunnel aerodynamics of an agile missile to improve the simulation accuracy and performance
Savas, Ozgun; Topbas, Eren; Unal, Kenan; Karaca, H. Deniz; Kutay, Ali Türker (2018-01-01)
© 2018, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Wind tunnel testing is an essential procedure to investigate the aerodynamics forces and moments. In this paper, a methodology is presented to perform such test in an efficient way. Experimental design process is carried out before the testing in order to cover the flight regime as much as possible with the least possible number of tests. After the determination of the test matrix and conducting the wind-on tests, the ...
Parametric design and investigation of grid fin aerodynamics in supersonic flow using computational fluid dynamics
Dinçer, Erdem; Sezer Uzol, Nilay (2022-01-01)
© 2022, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Recently, with the advances in modern missile industry, faster and more maneuverable missiles became fashionable. Designing fast and agile missiles requires efficient and strong control surfaces and grid fin is a candidate to fulfill this need. Grid fins are unconventional control surfaces, which has an outer frame supporting interior web structure. In this paper, “MICOM Grid Fin” wind tunnel experiments are used as th...
Computational modelling and analysis of porous bleed holes at supersonic speeds
Akar, Gökhan; Eyi, Sinan (2020-01-01)
© 2020, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Shock Wave / Boundary Layer Interaction is an important issue that should be taken into account when studying inlet design. Bleed holes have traditionally been used to remove the lower momentum part of the boundary layer to avoid separation from adverse Shock Wave / Boundary Layer Interaction. In this study, modeling of porous bleed holes investigated in computational fluid dynamics on a flat plate with and without an ...
High strain rate material characterization of Al 7075-T651 by modified Taylor impact test and velocity interferometry
Kesemen, Latif; Kayran, Altan (2017-01-01)
© 2017, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Metallic materials in aerospace structures are exposed to impact loading depending on their usage area. High strain rate material characterization of metallic materials is very crucial to properly prepare finite element models to be used in impact loading situations. Aluminum alloys are widely used in aerospace structures in variety of areas. Johnson-Cook material model is a suitable material model to represent the beh...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ç. O. Alanyalıoğlu and Y. Özyörük, “Fully transient conjugate analysis of silica-phenolic charing ablation coupled with interior ballistics,” 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69330.