Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Computational modelling and analysis of porous bleed holes at supersonic speeds
Date
2020-01-01
Author
Akar, Gökhan
Eyi, Sinan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
267
views
0
downloads
Cite This
© 2020, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Shock Wave / Boundary Layer Interaction is an important issue that should be taken into account when studying inlet design. Bleed holes have traditionally been used to remove the lower momentum part of the boundary layer to avoid separation from adverse Shock Wave / Boundary Layer Interaction. In this study, modeling of porous bleed holes investigated in computational fluid dynamics on a flat plate with and without an oblique shock interaction. For the validation of the method, three-dimensional CFD simulations are performed on fully resolved models with modeling bleed plenum and hole cavity details. Due to the ease of modeling on complex geometries, it is aimed to evaluate the unstructured grid approach on bleed flow. A grid convergence study is conducted on different levels of grids using Spalart-Allmaras, Realizable k-ε and SST k-ω turbulence models. Optimal grid resolution and turbulence model are determined for bleed flow simulations. Further CFD analyzes are performed at different total pressure ratios (Ppl/Pt) and results are compared with experimental data. The comparisons show good agreement between numerical solutions and test data for both cases. The comparisons show that the numerical solutions are in good agreement with the test data for both cases.
URI
https://hdl.handle.net/11511/69586
DOI
https://doi.org/10.2514/6.2020-3721
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Experimental design and statistical modeling methodology for wind tunnel aerodynamics of an agile missile to improve the simulation accuracy and performance
Savas, Ozgun; Topbas, Eren; Unal, Kenan; Karaca, H. Deniz; Kutay, Ali Türker (2018-01-01)
© 2018, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Wind tunnel testing is an essential procedure to investigate the aerodynamics forces and moments. In this paper, a methodology is presented to perform such test in an efficient way. Experimental design process is carried out before the testing in order to cover the flight regime as much as possible with the least possible number of tests. After the determination of the test matrix and conducting the wind-on tests, the ...
Computational fluid dynamics and proper orthogonal decomposition based control of flow over supersonic cavities
Gelisli, Kubra Asena; Aradag, Selin; Tascioglu, Yigit; Özer, Mehmet Bülent (2019-01-01)
© 2019, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.A Computational Fluid Dynamics (CFD) study is conducted to investigate the unsteady, turbulent supersonic cavity flow characteristics and to control the severe effects of the flow field. Simulations of Mach 1.5 supersonic cavity flow with a length to depth ratio of 5.07 are performed using commercial ANSYS Fluent solver. Unsteady density-based Reynolds Averaged Navier-Stokes equations are modeled with standard k-ω turb...
Multi-Fidelity Aerodynamic Dataset Generation of a Fighter Aircraft with a Deep Neural-Genetic Network
Millidere, Murat; Gomec, Fazil Selcuk; Kurt, Huseyin Burak; Akgül, Ferhat (2021-01-01)
© 2021, American Institute of Aeronautics and Astronautics Inc.. All rights reserved.This paper is a follow-up study on prior research work on multi-fidelity aerodynamic dataset generation. The prior work studied a comparison of modified Variable-Complexity Modelling and co-Kriging methods applied to F-16 fighter aircraft. In this research, the multi-fidelity deep neural-genetic network method is introduced. The results provide evidence that the deep neural-genetic network method in this paper can be employ...
Noise prediction of a transonic cavity flow via shear-layer-adapted delayed detached-eddy simulation
Yalçın, Özgür; Özyörük, Yusuf (2018-01-01)
© 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.An open cavity flow contains a highly turbulent shear layer which separates from the upstream edge and impinges on the aft wall of the cavity, causing intense noise emission. In this study, a delayed detached-eddy simulation (DDES) with the use of "shear-layer-adapted" subgrid length scale, an enhancement of DDES available in literature, is conducted for such an open cavity flow problem. The results show that this len...
Parametric design and investigation of grid fin aerodynamics in supersonic flow using computational fluid dynamics
Dinçer, Erdem; Sezer Uzol, Nilay (2022-01-01)
© 2022, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Recently, with the advances in modern missile industry, faster and more maneuverable missiles became fashionable. Designing fast and agile missiles requires efficient and strong control surfaces and grid fin is a candidate to fulfill this need. Grid fins are unconventional control surfaces, which has an outer frame supporting interior web structure. In this paper, “MICOM Grid Fin” wind tunnel experiments are used as th...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Akar and S. Eyi, “Computational modelling and analysis of porous bleed holes at supersonic speeds,” 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69586.