Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Implementation of 1 kV on LV feeders: A smart alternative to MV line investments to solve voltage drop problems at LV
Date
2017-04-19
Author
Özen, Kadir
Cebeci, Mahmut Erkut
TOR, BULENT OSMAN
Batar, Gökhan
Kılıç, Andaç
Türkmen, Ülfet
Güven, Ali Nezih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
192
views
0
downloads
Cite This
This paper presents methodology and on-site pilot implementation of utilizing 1 kV at low voltage (LV) feeders as an alternative to medium voltage (MV) line investments to solve voltage drop problems at LV systems. Typically distribution companies solve voltage drop problems of LV system by installing a new MV/LV transformer and transferring outmost loads of the existing transformer to the new transformer. This necessitates installation of MV line between the existing and new transformer. The implementation of 1 kV on the existing LV lines eliminates the need for MV line investment. It can be an alternative solution at those regions where MV line investment is challenging due to land use issues or bureaucratic concerns. In addition, the study shows that 1 kV implementation could be cost effective than the traditional MV expansion. Furthermore, such an implementation provides more flexibility to the operators, as addressed in the study.
Subject Keywords
1 kV
,
low voltage
,
voltage drop
,
DigSilent PowerFactory
URI
https://hdl.handle.net/11511/69338
DOI
https://doi.org/10.1109/sgcf.2017.7947630
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Implementation of 1 kV on LV feeders: a smart alternative to MV line investments to solve voltage drop problems at LV systems
OZENA, Kadir; CEBECI, Mahmut E.; TOR, Osman B.; BATAR, Gokhan; KILIC, Andac; TURKMEN, Ulfet; Güven, Ali Nezih (2017-04-21)
This paper presents methodology and on-site pilot implementation of utilizing 1 kV at low voltage (LV) feeders as an alternative to medium voltage (MV) line investments to solve voltage drop problems at LV systems. Typically distribution companies solve voltage drop problems of LV system by installing a new MV/LV transformer and transferring outmost loads of the existing transformer to the new transformer. This necessitates installation of MV line between the existing and new transformer. The implementation...
Performance Analysis of Reduced Common-Mode Voltage PWM Methods and Comparison With Standard PWM Methods for Three-Phase Voltage-Source Inverters
Hava, Ahmet Masum (2009-01-01)
This paper surveys the reduced common-mode voltage pulsewidth modulation (RCMV-PWM) methods for three-phase voltage-source inverters, investigates their performance characteristics, and provides a comparison with the standard PWM methods. PWM methods are reviewed, and their pulse patterns and common-mode voltage (CMV) patterns are illustrated. The inverter input and output current ripple characteristics and output voltage linearity characteristics of each PWM method are thoroughly investigated by analytical...
A 180 nm Self-Powered Rectifier Circuit for Electromagnetic Energy Harvesters
Ulusan, Hasan; Zorlu, Ozge; Külah, Haluk; Muhtaroglu, Ali (2013-12-18)
This paper presents a new self-powered low voltage rectifier implementation for vibration-based electromagnetic (EM) energy harvesters. The proposed circuit is an improved version of the previously reported rectifier, which was designed in TSMC 90 nm CMOS technology. The circuit is designed in lower cost UMC 180 nm CMOS technology, and uses a passive AC/DC quadrupler structure to supply the external power of the utilized active components. Simulation results show that the maximum power conversion efficiency...
Highly Integrated 3 V Supply Electronics for Electromagnetic Energy Harvesters With Minimum 0.4 V-peak Input
Ulusan, Hasan; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2017-07-01)
This paper presents a self-powered interface enabling battery-like operation with a regulated 3 V output from ac signals as low as 0.4 V-peak, generated by electromagnetic energy harvesters under low frequency vibrations. As the first stage of the 180 nm standard CMOS circuit, harvested signal is rectified through an ac/dc doubler with active diodes powered internally by a passive ac/dc quadrupler. The voltage is boosted in the second stage through a low voltage charge pump stimulated by an on-chip ring osc...
A Self-Powered Rectifier Circuit for Low-Voltage Energy Harvesting Applications
Ulusan, Hasan; Gharehbaghi, Kaveh; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2012-12-05)
This paper presents a fully self-powered low voltage and low power active rectifier circuit for vibration-based electromagnetic (EM) energy harvesters. A passive AC/DC doubler is used to provide a supply voltage for the active rectifier circuit. The proposed circuit is designed using standard 90 nm TSMC CMOS technology. The simulation results show that the proposed active rectifier circuit has voltage conversion ratio higher than 150% when the input peak voltage is more than 100 mV at open-load condition. T...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Özen et al., “Implementation of 1 kV on LV feeders: A smart alternative to MV line investments to solve voltage drop problems at LV,” 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69338.