Convergence acceleration based on convergence error estimation

2013-01-01
New methods are developed for convergence error estimation and convergence acceleration in iteratively solved problems. The convergence error estimation method is based on the eigenvalue analysis of linear systems, but it can also be used for nonlinear systems. Newton's method is used to estimate the magnitude and the phase angle of eigenvalues. The convergence of iterative method is accelerated by subtracting convergence error from the iteratively calculated solutions. The performances of these methods are demonstrated for the Laplace, Euler and Navier-Stokes equations.

Suggestions

Convergence Error Estimation and Convergence Acceleration in Iteratively Solved Problems
Eyi, Sinan (null; 2012-07-09)
New methods are developed for convergence error estimation and convergence acceleration in iteratively solved problems. The convergence error estimation method is based on the eigenvalue analysis of linear systems, but it can also be used for nonlinear systems. The convergence of iterative method is accelerated by subtracting convergence error from the iteratively calculated solutions. The performances of these methods are demonstrated for the Laplace, Euler and NavierStokes equations.
Numerical methods for multiphysics flow problems
Belenli Akbaş, Mine; Kaya Merdan, Songül; Rebholz, Leo G.; Department of Mathematics (2016)
In this dissertation, efficient and reliable numerical algorithms for approximating solutions of multiphysics flow problems are investigated by using numerical methods. The interaction of multiple physical processes makes the systems complex, and two fundamental difficulties arise when attempting to obtain numerical solutions of these problems: the need for algorithms that reduce the problems into smaller pieces in a stable and accurate way and for large (sometimes intractable) amount of computational resou...
Convergence performance of the approximate factorization methods with multi-block implicit boundary conditions at hypersonic speeds
Koca, Melikşah; Eyi, Sinan; Department of Aerospace Engineering (2022-9)
This thesis study presents convergence characteristics of the implicit approximate factorization methods at hypersonic flow conditions and with 2-dimensional and 3-dimensional geometries. The efficiency of the implicit boundary conditions at block interfaces for the multi-block grids is investigated for different approximate factorization methods. Standard Alternating Direction Implicit (ADI) method, Diagonal Dominant Alternating Direction Implicit method (DDADI) with and without Huang’s sub-iteration corre...
A 2-0 navier-stokes solution method with overset moving grids
Tuncer, İsmail Hakkı (1996-01-01)
A simple, robust numerical algorithm to localize moving boundary points and to interpolate uniteady solution variables across 2-D, arbitrarily overset computational grids is presented. Overset grids are allowed to move in time relative to each other. The intergrid boundary points are localized in terms of three grid points on the donor grid by a directional search algorithm. The parameters of the search algorithm give the interpolation weights at the localized boundary point. The method is independent of nu...
Application of fully implicit coupled method for 2D incompressible flows on unstructured grids
Zengin, Şeyda; Tarman, Işık Hakan; Department of Engineering Sciences (2012)
In the subject of Computational Fluid Dynamics (CFD), there seems to be small number of important progress in the pressure-based methods for several decades. Recent studies on the implicit coupled algorithms for pressure-based methods have brought a new insight. This method seems to provide a huge reduction in the solution times over segregated methods. Fully implicit coupled algorithm for pressure-based methods is very new subject with only few papers in literature. One of the most important work in this a...
Citation Formats
S. Eyi, “Convergence acceleration based on convergence error estimation,” 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69342.