Simulations of hypersonic flow regions with Fick’s law of diffusion with addition of different diffusivity models

2018-01-01
Gur, H. Berk
Eyi, Sinan
© 2018, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Hypersonic flows become popular due to its use in space explorations and military applications. It occurs normally, when a space craft re-enter to the atmosphere. Space crafts are exposed to high temperatures and high pressures because of Earth’s atmosphere and gravity. In addition in high temperatures, gases tend to react with each other. These reactions also have effects on space craft’s surface. In order to calculate these effects, all physical phenomena must be calculated. One of these phenomena is diffusion. Diffusion can be identified as movement of the species (O2;N2; ie:). There are various models for diffusion like Fick’s Law of Diffusion and Stefan-Maxwell Diffusion Equation. diffusion calculation, diffusion coefficient or diffusivity plays an important role as conductivity constant. There are also different models for calculating the diffusivity like, Constant Lewis Number method, Binary Collision Theory. In this study, Apollo AS-202 Command Module is selected as a re-entry space craft. Structural grid is applied around the geometry. Newton-GMRES method is used to solve flow field.

Suggestions

Analysis of effects of different diffusion models in hypersonic flow regimes
Gur, H. Berk; Eyi, Sinan (2017-01-01)
© 2017, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Hypersonic flows become popular due to its use in space explorations and military applications. It occurs normally, when a space craft re-enter to the atmosphere. Space crafts are exposed to high temperatures and high pressures because of Earth’s atmosphere and gravity. In addition in high temperatures, gases tend to react with each other. These reactions also have effects on space craft’s surface. In order to calculat...
Analysis of hypersonic flow using three dimensional Navier-Stokes equations
Özgün, Muharrem; Eyi, Sinan (2014-01-01)
© 2014 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.The purpose of this study is to develop an accurate and efficient CFD code that can be used in hypersonic flows. The flow analysis is based on the three dimensional Navier-Stokes equations. These equations are solved by using Newton’s method. The analytical method is used to calculate the Jacobian matrix. Flow parameters and convective heat transfer are analyzed on Apollo AS-202 Command Module. Especially, temperature...
Experimental design and statistical modeling methodology for wind tunnel aerodynamics of an agile missile to improve the simulation accuracy and performance
Savas, Ozgun; Topbas, Eren; Unal, Kenan; Karaca, H. Deniz; Kutay, Ali Türker (2018-01-01)
© 2018, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Wind tunnel testing is an essential procedure to investigate the aerodynamics forces and moments. In this paper, a methodology is presented to perform such test in an efficient way. Experimental design process is carried out before the testing in order to cover the flight regime as much as possible with the least possible number of tests. After the determination of the test matrix and conducting the wind-on tests, the ...
Computational fluid dynamics and proper orthogonal decomposition based control of flow over supersonic cavities
Gelisli, Kubra Asena; Aradag, Selin; Tascioglu, Yigit; Özer, Mehmet Bülent (2019-01-01)
© 2019, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.A Computational Fluid Dynamics (CFD) study is conducted to investigate the unsteady, turbulent supersonic cavity flow characteristics and to control the severe effects of the flow field. Simulations of Mach 1.5 supersonic cavity flow with a length to depth ratio of 5.07 are performed using commercial ANSYS Fluent solver. Unsteady density-based Reynolds Averaged Navier-Stokes equations are modeled with standard k-ω turb...
Modification of the extended messinger model for mixed phase icing and industrial applications with TAICE
Ayan, Erdem; Özgen, Serkan (2017-01-01)
© 2017, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Computational studies have been performed in order to predict mixed phase ice accretion on aircraft components. In-house developed TAICE tool has been used in this study. Previously, TAICE was already validated for icing cases due to water droplets only. In addition, in the framework of High Altitude Ice Crystals (HAIC) FP7 European project, mixed phase ice accretion prediction capability has been added to TAICE. Up to...
Citation Formats
H. B. Gur and S. Eyi, “Simulations of hypersonic flow regions with Fick’s law of diffusion with addition of different diffusivity models,” 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69438.