Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Simulations of hypersonic flow regions with Fick’s law of diffusion with addition of different diffusivity models
Date
2018-01-01
Author
Gur, H. Berk
Eyi, Sinan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
181
views
0
downloads
Cite This
© 2018, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Hypersonic flows become popular due to its use in space explorations and military applications. It occurs normally, when a space craft re-enter to the atmosphere. Space crafts are exposed to high temperatures and high pressures because of Earth’s atmosphere and gravity. In addition in high temperatures, gases tend to react with each other. These reactions also have effects on space craft’s surface. In order to calculate these effects, all physical phenomena must be calculated. One of these phenomena is diffusion. Diffusion can be identified as movement of the species (O2;N2; ie:). There are various models for diffusion like Fick’s Law of Diffusion and Stefan-Maxwell Diffusion Equation. diffusion calculation, diffusion coefficient or diffusivity plays an important role as conductivity constant. There are also different models for calculating the diffusivity like, Constant Lewis Number method, Binary Collision Theory. In this study, Apollo AS-202 Command Module is selected as a re-entry space craft. Structural grid is applied around the geometry. Newton-GMRES method is used to solve flow field.
URI
https://hdl.handle.net/11511/69438
DOI
https://doi.org/10.2514/6.2018-1834
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Analysis of effects of different diffusion models in hypersonic flow regimes
Gur, H. Berk; Eyi, Sinan (2017-01-01)
© 2017, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Hypersonic flows become popular due to its use in space explorations and military applications. It occurs normally, when a space craft re-enter to the atmosphere. Space crafts are exposed to high temperatures and high pressures because of Earth’s atmosphere and gravity. In addition in high temperatures, gases tend to react with each other. These reactions also have effects on space craft’s surface. In order to calculat...
Analysis of hypersonic flow using three dimensional Navier-Stokes equations
Özgün, Muharrem; Eyi, Sinan (2014-01-01)
© 2014 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.The purpose of this study is to develop an accurate and efficient CFD code that can be used in hypersonic flows. The flow analysis is based on the three dimensional Navier-Stokes equations. These equations are solved by using Newton’s method. The analytical method is used to calculate the Jacobian matrix. Flow parameters and convective heat transfer are analyzed on Apollo AS-202 Command Module. Especially, temperature...
Experimental design and statistical modeling methodology for wind tunnel aerodynamics of an agile missile to improve the simulation accuracy and performance
Savas, Ozgun; Topbas, Eren; Unal, Kenan; Karaca, H. Deniz; Kutay, Ali Türker (2018-01-01)
© 2018, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Wind tunnel testing is an essential procedure to investigate the aerodynamics forces and moments. In this paper, a methodology is presented to perform such test in an efficient way. Experimental design process is carried out before the testing in order to cover the flight regime as much as possible with the least possible number of tests. After the determination of the test matrix and conducting the wind-on tests, the ...
Computational fluid dynamics and proper orthogonal decomposition based control of flow over supersonic cavities
Gelisli, Kubra Asena; Aradag, Selin; Tascioglu, Yigit; Özer, Mehmet Bülent (2019-01-01)
© 2019, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.A Computational Fluid Dynamics (CFD) study is conducted to investigate the unsteady, turbulent supersonic cavity flow characteristics and to control the severe effects of the flow field. Simulations of Mach 1.5 supersonic cavity flow with a length to depth ratio of 5.07 are performed using commercial ANSYS Fluent solver. Unsteady density-based Reynolds Averaged Navier-Stokes equations are modeled with standard k-ω turb...
Modification of the extended messinger model for mixed phase icing and industrial applications with TAICE
Ayan, Erdem; Özgen, Serkan (2017-01-01)
© 2017, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Computational studies have been performed in order to predict mixed phase ice accretion on aircraft components. In-house developed TAICE tool has been used in this study. Previously, TAICE was already validated for icing cases due to water droplets only. In addition, in the framework of High Altitude Ice Crystals (HAIC) FP7 European project, mixed phase ice accretion prediction capability has been added to TAICE. Up to...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. B. Gur and S. Eyi, “Simulations of hypersonic flow regions with Fick’s law of diffusion with addition of different diffusivity models,” 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69438.