On the application of hole-selective MoOx as full-area rear contact for industrial scale p-type c-Si solar cells

Nasser, Hisham
Es, Fırat
Zolfaghari Borra, Mona
Semiz, Emel
Kokbudak, Gamze
Orhan, Efe
Turan, Raşit
We present the feasibility of integrating substoichiometric molybdenum oxide (MoOx) as hole-selective rear contact into the production sequence of industrial scale p-type crystalline silicon (c-Si) solar cells. Thin films of MoOx are deposited directly on p-type c-Si by thermal evaporation at room temperature. It is found that Ag/MoOx/p-type c-Si rear contact structure exhibits low contact resistivity and modest surface recombination current density. The attained peak efficiency (eta) of the fabricated solar cells is 17.65% with V-oc of 626 mV, J(sc) of 36.8 mA/cm(2), and fill factor (FF) of 76.63%. Next, a complete loss analysis of a MoOx/p-type Si heterojunction solar cell is carried out for the first time by using Quokka simulation software that employs characteristics of different layers which constitute the fabricated solar cell. Based on this loss analysis, the dominant loss mechanisms are defined and a roadmap to attain the desired highest possible efficiency from industrial scale p-type c-Si solar cells with full-area MoOx hole-collecting rear contact is explored.


On the electrical and charge conduction properties of thermally evaporated MoOx on n- and p-type crystalline silicon
GÜLNAHAR, MURAT; Nasser, Hisham; Salimi, Arghavan; Turan, Raşit (Springer Science and Business Media LLC, 2020-11-01)
In this work, the electrical and charge conduction characteristics of a contact structure featuring thermally evaporated MoOx, deposited on n- and p-type crystalline silicon (c-Si), are extensively investigated by room temperature current-voltage (I-V), transmission line measurements (TLM), and temperaturedependent current-voltage measurements (I-V-T). XRD diffraction spectrum shows that the deposited MoOx film exhibits amorphous nature. From TLM measurements, the values of contact resistivity are calculate...
Investigation of structural, electronic, magnetic and lattice dynamical properties for XCoBi (X: Ti, Zr, Hf) Half-Heusler compounds
Surucu, Gokhan; IŞIK, MEHMET; CANDAN, ABDULLAH; Wang, Xiaotian; Güllü, Hasan Hüseyin (Elsevier BV, 2020-06-15)
Structural, electronic, magnetic, mechanical and lattice dynamical properties of XCoBi (X: Ti, Zr, Hf) Half-Heusler compounds have been investigated according to density functional theory and generalized gradient approximation. Among alpha, beta and gamma structural phases, gamma-phase structure has been found as the most stability characteristics depending on the calculated formation enthalpies, energy-volume dependencies and Cauchy pressures. Energy-volume plots of possible magnetic orders of gamma-phase ...
A theoretical study of chemical doping and width effect on zigzag graphene nanoribbons
Pekoz, Rengin; Erkoç, Şakir (Elsevier BV, 2009-12-01)
The energetics and the electronic properties of nitrogen- and boron-doped graphene nanoribbons with zigzag edges have been investigated using density functional theory calculations. For the optimized geometry configurations, vibrational frequency analysis and wavefunction stability tests have been carried out. Different doping site optimizations for a model nanoribbon have been performed and formation energy values of these sites revealed that zigzag edgesite for both of the dopants were the most favorable ...
Characteristics of HfO2 and SiO2 on p-type silicon wafers using terahertz spectroscopy
Altan, Hakan; Pham, D.; Grebel, H.; Federici, J. F. (IOP Publishing, 2007-05-01)
The effect of high-kappa dielectric HfO2 films on 200 mm diameter p-type silicon substrates was investigated and compared with conventional dielectric material, SiO2. We employed all-optical characterization methods using terahertz (THz) time-domain spectroscopy and visible cw pump/THz probe spectroscopy. Measurements were performed on two sets of samples, each set containing both HfO2 and SiO2 coated wafers with varying thickness of oxide layer. One set had a protective coating of either photoresist or Si3...
Phonon dispersions and elastic constants of disordered Pd-Ni alloys
Kart, SO; Tomak, Mehmet; Cagin, T (Elsevier BV, 2005-01-31)
Phonon frequencies of Pd-Ni alloys are calculated by molecular dynamics (MD) simulation. Lattice dynamical properties computed from Sutton-Chen (SC) and quantum Sutton-Chen (Q-SC) potentials as a function of temperature are compared with each other. We present all interatomic force constants up to the 8th nearest-neighbor shell obtained by using the calculated potential. Elastic constants evaluated by two methods are consistent with each other. The transferability of the potential is also tested. The result...
Citation Formats
H. Nasser et al., “On the application of hole-selective MoOx as full-area rear contact for industrial scale p-type c-Si solar cells,” PROGRESS IN PHOTOVOLTAICS, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69519.