A multi-band metamaterial absorber design for solar cell applicatıins

Download
2016-8
Mulla, Batuhan
Solar energy is one of the most abundant energy in nature. Harvesting this energy in a more efficient way can be realized by metamaterials. Metamaterials which are manmade artificial materials can provide great absorption characteristics as well as reduced material costs with their compact structures. In this thesis, unique metamaterial absorber designs for thermo-photovoltaic and for photovoltaic applications are proposed and numerically analyzed in terms of their absorption capacity, polarization and incident angle stability and thermal stability. Moreover, absorption enhancement techniques such as applying graphene or indium thin oxide layers are discussed and implemented to the absorber design.

Suggestions

Wide-band perfect metamaterial absorber for solar cells applications
Rufangura, Patrick; Sabah, Cumali; Sustainable Environment and Energy Systems (2015-8)
Global adoption of solar photovoltaic (PV) cells as a sustainable substitute to fossil fuel technologies has been impeded by its low efficiency. Generally, efficiency of these devices strongly depends on their ability to absorb radiations of electromagnetic waves incident on them. Their low absorptivity provides a challenge. Metamaterials (MTM) based solar cells offer an opportunity for increasing the system efficiency by enhancing the total absorbed solar radiation incident on solar PV cells. In this thesi...
Dual-band perfect metamaterial absorber for solar cell applications
Rufangura, Patrick; Sabah, Cumali (2015-10-01)
The efficiency of solar photovoltaic (PV) cells has been one of the major problems impeding its global adoption as one of the sustainable substitutes to fossil fuel based technologies. Metamaterial (MTM) based solar cells offer an opportunity towards increasing the system efficiency by enhancing the total absorbed solar radiation incident on this device. In this study, a nanostructure-based MTM perfect absorber has been designed and simulated. By adjusting geometrical parameters and MTM structure properties...
A Feasibility study for external control on self-organized production of plasmonic enhancement interfaces for solar cells
Zolfaghari Borra, Mona; Bek, Alpan; Ünalan, Hüsnü Emrah; Department of Micro and Nanotechnology (2013)
The present study is about the improvement of the energy conversion efficiency of solar cells in which plasmonic light-trapping approach has been investigated. In this study, metal nanoparticles are allowed to form in a self-organized fashion on both flat and textured full scale monocrystalline silicon solar cell. These metal nanoparticles with strong optical interaction cross-sections at localized plasmonic resonance energies, improve coupling of the incoming light into the active area of solar cells by wa...
New generation metamaterial for energy harvesting
Üstünsoy, Mehmet Paşa; Sabah, Cumali; Sustainable Environment and Energy Systems (2017-8)
Scientists and researchers have been working for many years to find alternative energy sources for gathering the energy demand in which solar energy is a kind of renewable energy source. The proposed structures can be used in several applications such as antennas, EM filters, sensors, THz imaging systems, infrared spectroscopy, infrared cameras, solar cells, and so on. The aim of this thesis is to design and analyze new metamaterial absorbers and energy harvesters with different materials. In addition to th...
Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator
BAĞMANCI, MEHMET; KARAASLAN, MUHARREM; ÜNAL, EMİN; AKGÖL, OĞUZHAN; Sabah, Cumali (2017-07-01)
A new metamaterial absorber (MA) is investigated and shown numerically for solar energy harvesting for future solar cell applications. The structure consists of two metals and one dielectric layer having different thicknesses. Owing to this combination, the structure exhibits plasmonic resonance characteristics. In the entire spectrum of visible frequency region, the obtained results show that investigated structure has perfect absorptivity which is above 91.8%. Proposed structure also has 99.87% absorption...
Citation Formats
B. Mulla, “A multi-band metamaterial absorber design for solar cell applicatıins,” M.S. - Master of Science, Middle East Technical University, 2016.