Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
New generation metamaterial for energy harvesting
Download
12621575.pdf
Date
2017-8
Author
Üstünsoy, Mehmet Paşa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
219
views
223
downloads
Cite This
Scientists and researchers have been working for many years to find alternative energy sources for gathering the energy demand in which solar energy is a kind of renewable energy source. The proposed structures can be used in several applications such as antennas, EM filters, sensors, THz imaging systems, infrared spectroscopy, infrared cameras, solar cells, and so on. The aim of this thesis is to design and analyze new metamaterial absorbers and energy harvesters with different materials. In addition to this, metamaterial on antennas is designed and analyzed. Furthermore, the designed structures are numerically simulated and subjected to some enhancement techniques.
Subject Keywords
Metamaterial
,
Absorber
,
Energy Harvesting
,
Antennas
,
Solar Cells
URI
https://hdl.handle.net/11511/69828
Collections
Northern Cyprus Campus, Thesis
Suggestions
OpenMETU
Core
Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator
BAĞMANCI, MEHMET; KARAASLAN, MUHARREM; ÜNAL, EMİN; AKGÖL, OĞUZHAN; Sabah, Cumali (2017-07-01)
A new metamaterial absorber (MA) is investigated and shown numerically for solar energy harvesting for future solar cell applications. The structure consists of two metals and one dielectric layer having different thicknesses. Owing to this combination, the structure exhibits plasmonic resonance characteristics. In the entire spectrum of visible frequency region, the obtained results show that investigated structure has perfect absorptivity which is above 91.8%. Proposed structure also has 99.87% absorption...
Wide-band perfect metamaterial absorber for solar cells applications
Rufangura, Patrick; Sabah, Cumali; Sustainable Environment and Energy Systems (2015-8)
Global adoption of solar photovoltaic (PV) cells as a sustainable substitute to fossil fuel technologies has been impeded by its low efficiency. Generally, efficiency of these devices strongly depends on their ability to absorb radiations of electromagnetic waves incident on them. Their low absorptivity provides a challenge. Metamaterials (MTM) based solar cells offer an opportunity for increasing the system efficiency by enhancing the total absorbed solar radiation incident on solar PV cells. In this thesi...
A multi-band metamaterial absorber design for solar cell applicatıins
Mulla, Batuhan; Sabah, Cumali; Sustainable Environment and Energy Systems (2016-8)
Solar energy is one of the most abundant energy in nature. Harvesting this energy in a more efficient way can be realized by metamaterials. Metamaterials which are manmade artificial materials can provide great absorption characteristics as well as reduced material costs with their compact structures. In this thesis, unique metamaterial absorber designs for thermo-photovoltaic and for photovoltaic applications are proposed and numerically analyzed in terms of their absorption capacity, polarization an...
Highly efficient Multi-Junction Solar Cells Performance Improvement for AC Induction Motor Control Using the dsPIC30F Microcontroller
Dida, Abdelkader Hadj; Bourahla, Mohamed; Ertan, Hulusi Bülent (2019-01-01)
Solar energy is an abundant renewable source which is expected to play an increasing role in terrestrial and space systems future infrastructure for distributed power generation. Improving of solar performance and efficiency is a key goal of research and the prominent factor in photovoltaic systems which make PV technologies cost-competitive with conventional sources of energy. Multi-junction solar cells are the most efficient technology for generation of electricity from solar irradiation. It's estimated t...
Multiband Metamaterial Absorber Design Based on Plasmonic Resonances for Solar Energy Harvesting
Mulla, Batuhan; Sabah, Cumali (2016-10-01)
A new metamaterial absorber is designed and characterized numerically for the harvesting of solar energy. The design is composed of three layers in which the interaction among them gives rise to the plasmonic resonances. The main operation frequency range of the proposed structure is chosen to be the visible regime. However, the design is also analyzed for the infrared and ultraviolet regimes. In order to characterize the absorber, some parametric studies with respect to the dimensions of the structure are ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. P. Üstünsoy, “New generation metamaterial for energy harvesting,” M.S. - Master of Science, Middle East Technical University, 2017.