Incorporation of personal Single Nucleotide Polymorphism (SNP) data into a national level electronic health record for disease risk assessment, part 2: The incorporation of SNP into the national health information system of Turkey

2014-08-01
Beyan, Timur
Aydın Son, Yeşim
©Timur Beyan, Yeşim Aydin Son.Background: A personalized medicine approach provides opportunities for predictive and preventive medicine. Using genomic, clinical, environmental, and behavioral data, the tracking and management of individual wellness is possible. A prolific way to carry this personalized approach into routine practices can be accomplished by integrating clinical interpretations of genomic variations into electronic medical record (EMR)s/electronic health record (EHR)s systems. Today, various central EHR infrastructures have been constituted in many countries of the world, including Turkey. Objective: As an initial attempt to develop a sophisticated infrastructure, we have concentrated on incorporating the personal single nucleotide polymorphism (SNP) data into the National Health Information System of Turkey (NHIS-T) for disease risk assessment, and evaluated the performance of various predictive models for prostate cancer cases. We present our work as a miniseries containing three parts: (1) an overview of requirements, (2) the incorporation of SNP into the NHIS-T, and (3) an evaluation of SNP data incorporated into the NHIS-T for prostate cancer. Methods: For the second article of this miniseries, we have analyzed the existing NHIS-T and proposed the possible extensional architectures. In light of the literature survey and characteristics of NHIS-T, we have proposed and argued opportunities and obstacles for a SNP incorporated NHIS-T. A prototype with complementary capabilities (knowledge base and end-user applications) for these architectures has been designed and developed. Results: In the proposed architectures, the clinically relevant personal SNP (CR-SNP) and clinicogenomic associations are shared between central repositories and end-users via the NHIS-T infrastructure. To produce these files, we need to develop a national level clinicogenomic knowledge base. Regarding clinicogenomic decision support, we planned to complete interpretation of these associations on the end-user applications. This approach gives us the flexibility to add/update envirobehavioral parameters and family health history that will be monitored or collected by end users. Conclusions: Our results emphasized that even though the existing NHIS-T messaging infrastructure supports the integration of SNP data and clinicogenomic association, it is critical to develop a national level, accredited knowledge base and better end-user systems for the interpretation of genomic, clinical, and envirobehavioral parameters.
Journal of Medical Internet Research

Suggestions

Incorporation of personal Single Nucleotide Polymorphism (SNP) data into a national level electronic health record for disease risk assessment, Part 3: An evaluation of SNP Incorporated National Health Information System of Turkey for prostate cancer
Beyan, Timur; Aydın Son, Yeşim (2014-08-01)
©Timur Beyan, Yeşim Aydin Son.Background: A personalized medicine approach provides opportunities for predictive and preventive medicine. Using genomic, clinical, environmental, and behavioral data, the tracking and management of individual wellness is possible. A prolific way to carry this personalized approach into routine practices can be accomplished by integrating clinical interpretations of genomic variations into electronic medical records (EMRs)/electronic health records (EHRs). Today, various centr...
Incorporation of Personal Single Nucleotide Polymorphism (SNP) Data into a National Level Electronic Health Record for Disease Risk Assessment, Part 1: An Overview of Requirements
Beyan, Timur; Aydın Son, Yeşim (JMIR Publications Inc., 2014-7-24)
Background: Personalized medicine approaches provide opportunities for predictive and preventive medicine. Using genomic, clinical, environmental, and behavioral data, tracking and management of individual wellness is possible. A prolific way to carry this personalized approach into routine practices can be accomplished by integrating clinical interpretations of genomic variations into electronic medical records (EMRs)/electronic health records (EHRs). Today, various central EHR infrastructures have been...
Integrative Predictive Modeling of Metastasis in Melanoma Cancer Based on MicroRNA, mRNA, and DNA Methylation Data
Kutlay, Aysegul; Aydın Son, Yeşim (2021-09-01)
Introduction: Despite the significant progress in understanding cancer biology, the deduction of metastasis is still a challenge in the clinic. Transcriptional regulation is one of the critical mechanisms underlying cancer development. Even though mRNA, microRNA, and DNA methylation mechanisms have a crucial impact on the metastatic outcome, there are no comprehensive data mining models that combine all transcriptional regulation aspects for metastasis prediction. This study focused on identifying the regul...
Intelligent healthcare monitoring system based on semantically enriched clinical guidelines
Laleci, Gökçe Banu; Doğaç, Asuman; Department of Computer Engineering (2008)
Clinical guidelines are developed to assist healthcare practitioners to make decisions on a patient's medical problems and as such they communicate with external applications to retrieve patient data, to initiate medical actions through clinical workflows and to transmit information to alert/reminder systems. The interoperability problems in the healthcare IT domain for interacting with heterogeneous clinical workflow systems and Electronic Healthcare Record (EHR) Systems prevent wider deployment of clinica...
ANALYSIS OF NEUROONCOLOGICAL DATA TO PREDICT SUCCESS OF OPERATION THROUGH CLASSIFICATION
Bagherzadi, Negin; BÖRCEK, ALP ÖZGÜN; TOKDEMİR, GÜL; ÇAĞILTAY, NERGİZ; MARAŞ, HADİ HAKAN (2016-10-05)
Data mining algorithms have been applied in various fields of medicine to get insights about diagnosis and treatment of certain diseases. This gives rise to more research on personalized medicine as patient data can be utilized to predict outcomes of certain treatment procedures. Accordingly, this study aims to create a model to provide decision support for surgeons in Neurooncology surgery. For this purpose, we have analyzed clinical pathology records of Neurooncology patients through various classificatio...
Citation Formats
T. Beyan and Y. Aydın Son, “Incorporation of personal Single Nucleotide Polymorphism (SNP) data into a national level electronic health record for disease risk assessment, part 2: The incorporation of SNP into the national health information system of Turkey,” Journal of Medical Internet Research, pp. 0–0, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69775.