Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Spin-axis tilt estimation for spinning spacecraft
Date
2016-01-01
Author
Söken, Halil Ersin
Asamura, Kazushi
Nakamura, Yosuke
Takashima, Takeshi
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
151
views
0
downloads
Cite This
© 2016 American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.The spin-axis tilt, which is also known as dynamic imbalance or coning error, is one of the most significant bias errors deteriorating the attitude determination accuracy for spinning spacecrafts. Although it is a common practical issue for spin spacecraft missions, estimation algorithms for the dynamic imbalance have not been studied and issued well. This paper proposes a simple algorithm for spin-axis tilt estimation. The algorithm is based on the Singular Value Decomposition (SVD) and makes use of the attitude rates estimated by an Unscented Kalman Filter (UKF), along with the star scanner measurements. Its accuracy is demonstrated using the models for the Exploration of Energization and Radiation in Geospace (ERG) spacecraft. Other bias errors’ effects on the estimation accuracy are examined and the results are compared with a straightforward averaging approach for dynamic imbalance calculation.
URI
https://hdl.handle.net/11511/69780
DOI
https://doi.org/10.2514/6.2016-0626
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Structural dynamics analysis and passive control of wind turbine vibrations with tuned mass damper (TMD) technique
Farsadi, Touraj; Kayran, Altan (2016-01-01)
© 2016, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.This paper investigates the use of a passive control device, tuned mass damper (TMD) for the control of vibrations of a simplified wind turbine. In the wind turbine model, tower and blades are modeled with continuous beam structure. Concentrated mass is considered as the nacelle. TMD system is placed at top of tower and attached to the nacelle. The coupled governing equation of motions and associated boundary condition...
Aerodynamic parameter estimation of a supersonic air to air missile with rapid speed variation
Bayoglu, Tugba; Nalci, Mehmet Ozan; Kutay, Ali Türker (2016-01-01)
© 2016 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.Maneuver inputs designed for aircraft parameter identification are often applied during the aircraft flies close to a trimmed flight condition at an approximately constant Mach number. Since a fixed wing aircraft has control over its thrust and speed, various maneuver inputs can be applied to identify aerodynamic derivatives at discrete Mach numbers. On the contrary, most agile missile configurations do not have contr...
Aerodynamic optimization of wing-body configuration using discrete adjoint method
Yıldırım, Ahmet; Eyi, Sinan (2017-01-01)
© 2017, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.The gradient based sensitivities required by design optimization are obtained by three different methods based on three dimensional Euler equations. Finite difference, Direct and Adjoint methods are used to compute objective sensitivities. A cell centered, upwind based finite volume method is implemented to discretize the Euler equations. The flow solution is obtained by preconditioned matrix-free Newton-GMRES algorith...
Aeroelastic Model Corrections of a Very Light Aircraft; Implications on Static Trim, Flutter and Gust Response
Demirer, Halime Gül; Kayran, Altan (2022-01-01)
© 2022, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.This paper discusses the aeroelastic model corrections employed in the static and dynamic aeroelastic analysis of a very light aircraft. MSC.FlightLoads and MSC.Nastran are used for aeroelastic modeling and analysis. Discussion covers improvement of the aerodynamic solution, aerodynamic modeling approaches and aero-structure coupling alternatives. Aerodynamic calculations are based on the Doublet-Lattice Method (DLM). ...
Experimental design and statistical modeling methodology for wind tunnel aerodynamics of an agile missile to improve the simulation accuracy and performance
Savas, Ozgun; Topbas, Eren; Unal, Kenan; Karaca, H. Deniz; Kutay, Ali Türker (2018-01-01)
© 2018, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Wind tunnel testing is an essential procedure to investigate the aerodynamics forces and moments. In this paper, a methodology is presented to perform such test in an efficient way. Experimental design process is carried out before the testing in order to cover the flight regime as much as possible with the least possible number of tests. After the determination of the test matrix and conducting the wind-on tests, the ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. E. Söken, K. Asamura, Y. Nakamura, and T. Takashima, “Spin-axis tilt estimation for spinning spacecraft,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69780.