Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Incorporation of waste and pozzolanic materials as partial replacement for the development of sustainable concrete
Download
12621763.pdf
Date
2018-1
Author
Hamza, Ali
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
242
views
124
downloads
Cite This
Excessive production of cement due to modern construction practices frames cement as a leading pollutant of releasing significant amounts of CO2 in the atmosphere. The thesis begins with the examination of the alternative binding materials used as partial replacement to cement. Supplementary cementitious material, silica fume, is used as partial replacement to Portland cement whereas, waste materials, marble dust and crushed bricks, are used as partial replacement to the fine aggregates in this thesis. The study investigates the long-term mechanical properties and durability characteristics of pozzolanic concrete incorporated with waste materials. The main parameters studied in this thesis are compressive strength, water permeability, resistance to sulfate and freeze and thaw attack as well as porosity. The development of the complex chemical reactions within the cement matrix such as cement hydration and pozzolanic reaction are examined using Scanning Electron Microscope. Material characterization is carried out using X-ray florescence and particle size distribution. The results suggested that it is not only possible to reduce the consumption of Portland cement and natural resources up to 40% using pozzolans and waste materials but also enhances the mechanical properties of concrete at long term. The use of waste materials in combination with pozzolans showed a dramatic decrease in water permeability and porosity as well as improved the resistance against external sulfate attack and action of freeze and thaw significantly.
Subject Keywords
Silica Fume
,
Marble Dust
,
Crushed Bricks
,
Mechanical Properties
,
Durability Characteristics
URI
https://hdl.handle.net/11511/69799
Collections
Northern Cyprus Campus, Thesis
Suggestions
OpenMETU
Core
Implementation of horizontal well CBM/ECBM technology and the assessment of effective CO2 storage capacity in a Scottish coalfield
Sınayuç, Çağlar; Imrie, Claire E.; Syed, S. Amer; Korre, Anna; Durucan, Sevket (Elsevier BV, 2011-01-01)
In this study the theoretical and effective methane recovery and CO2 storage potential of four coal seams within a well characterised section of a CBM license in Scotland are estimated, considering different horizontal well patterns, the effect of permeability heterogeneity and the composition of the injected fluid. The study concerns the Airth area of the Clackmannan coalfield in the Scottish Midland Valley. The effort on building the static earth model and the history match results of the pre-existing ver...
Utilization of soda and beer wastes in cementitious systems
Aleessa Alam, Burhan; Yaman, İsmail Özgür; Department of Cement Engineering (2009)
To maintain the sustainability of cement and concrete production, there is a trend to use wastes in their production. Soda waste, generated by soda ash production process, and beer waste, generated by beer filtration process, are two locally produced wastes in Turkey and many other countries. The nature of these wastes, mostly their fineness, makes them possible to be used in concrete production, especially as a viscosity modifying agent in the self consolidating type of concrete. In this study, the additio...
Life cycle assessment of two different renewable energy systems for a selected region: Bozcaada island
Şentürk, Ayşe Eylül; Oğuz, Elif (2020-01-01)
Energy production without destroying the environment has been one of the most crucial issues for the people living in today'sworld. In order to analyse whole environmental impacts of energy production process, life cycle assessment (LCA) is widely used. In this study, two distinct renewable energy systems are assessed. First, a land-based wind farm which has been operating in Bozcaada Island since 2000 compared with a proposed solar photovoltaic power plant in terms of Energy Pay-Back Time (EPBT) periods an...
Cement production by cement-bonded wood particleboard wastes
Yilmaz, Mustafa; Tokyay, Mustafa; Yaman, İsmail Özgür (2016-01-01)
To improve the sustainability of cement and concrete production, there is an increasing trend towards using industrial wastes throughout their production processes. The aim is to find new resources that can be used in any step of cement and concrete production and to find solutions to many problems related to the disposal of wastes. This article discusses the use of wastes generated from cement-bonded wood particle board (CB) manufacturing in cement production. CB waste, which basically contains wood chips ...
Optimizing the orientation of solar photovoltaic systems considering the effects of irradiation and cell temperature models with dust accumulation
Al-Ghussain, Loiy; Taylan, Onur; Abujubbeh, Mohammad; Hassan, Muhammed A. (2023-01-01)
To cope with the growing installation capacities of solar photovoltaic (PV) systems in desert areas, it is necessary to revisit the energy production models and the optimal angles of PV panels given the significant impacts of ambient temperature, wind speed, dust accumulation, and cleaning frequency. In this study, these four factors are examined for four PV technologies (polycrystalline, microcrystalline, monocrystalline, and thin-film) at three cities in Jordan, Egypt, and Tunisia using precise ground-lev...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Hamza, “Incorporation of waste and pozzolanic materials as partial replacement for the development of sustainable concrete,” M.S. - Master of Science, Middle East Technical University, 2018.