Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Catadioptric hyperspectral imaging, an unmixing approach
Date
2020-10-01
Author
Baskurt, Didem Ozisik
BAŞTANLAR, YALIN
Çetin, Yasemin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
233
views
0
downloads
Cite This
Hyperspectral imaging systems provide dense spectral information on the scene under investigation by collecting data from a high number of contiguous bands of the electromagnetic spectrum. The low spatial resolutions of these sensors frequently give rise to the mixing problem in remote sensing applications. Several unmixing approaches are developed in order to handle the challenging mixing problem on perspective images. On the other hand, omnidirectional imaging systems provide a 360-degree field of view in a single image at the expense of lower spatial resolution. In this study, we propose a novel imaging system which integrates hyperspectral cameras with mirrors so on to yield catadioptric omnidirectional imaging systems to benefit from the advantages of both modes. Catadioptric images, incorporating a camera with a reflecting device, introduce radial warping depending on the structure of the mirror used in the system. This warping causes a non-uniformity in the spatial resolution which further complicates the unmixing problem. In this context, a novel spatial-contextual unmixing algorithm specifically for the large field of view of the hyperspectral imaging system is developed. The proposed algorithm is evaluated on various real-world and simulated cases. The experimental results show that the proposed approach outperforms compared methods.
Subject Keywords
Software
,
Computer Vision and Pattern Recognition
URI
https://hdl.handle.net/11511/70039
Journal
IET COMPUTER VISION
DOI
https://doi.org/10.1049/iet-cvi.2019.0784
Collections
Graduate School of Informatics, Article
Suggestions
OpenMETU
Core
Continuous dimensionality characterization of image structures
Felsberg, Michael; Kalkan, Sinan; Kruger, Norbert (Elsevier BV, 2009-05-04)
Intrinsic dimensionality is a concept introduced by statistics and later used in image processing to measure the dimensionality of a data set. In this paper, we introduce a continuous representation of the intrinsic dimension of an image patch in terms of its local spectrum or, equivalently, its gradient field. By making use of a cone structure and barycentric co-ordinates, we can associate three confidences to the three different ideal cases of intrinsic dimensions corresponding to homogeneous image patche...
Data-driven image captioning via salient region discovery
Kilickaya, Mert; Akkuş, Burak Kerim; Çakıcı, Ruket; Erdem, Aykut; Erdem, Erkut; İKİZLER CİNBİŞ, NAZLI (Institution of Engineering and Technology (IET), 2017-09-01)
n the past few years, automatically generating descriptions for images has attracted a lot of attention in computer vision and natural language processing research. Among the existing approaches, data-driven methods have been proven to be highly effective. These methods compare the given image against a large set of training images to determine a set of relevant images, then generate a description using the associated captions. In this study, the authors propose to integrate an object-based semantic image r...
Motion estimation using complex discrete wavelet transform
Sarı, Hüseyin; Severcan, Mete; Department of Electrical and Electronics Engineering (2003)
The estimation of optical flow has become a vital research field in image sequence analysis especially in past two decades, which found applications in many fields such as stereo optics, video compression, robotics and computer vision. In this thesis, the complex wavelet based algorithm for the estimation of optical flow developed by Magarey and Kingsbury is implemented and investigated. The algorithm is based on a complex version of the discrete wavelet transform (CDWT), which analyzes an image through blo...
On channel capacity of FSO communication systems in anisotropic non-Kolmogorov strong turbulent atmosphere
Ata, Yalcin (The Optical Society, 2019-09-01)
Average channel capacity of free space optical (FSO) communication systems using a Gaussian beam with the intensity modulation and direct detection technique is investigated in anisotropic non-Kolmogorov strong turbulent atmosphere. The channel model is selected as gamma-gamma distribution, which is valid for strong turbulence. Obtained results show that anisotropy in both the horizontal and vertical affects the average channel capacity of an FSO communication system positively. Average channel capacity inc...
Omnidirectional hyperspectral imaging
Başkurt, Nur Didem; Yardımcı Çetin, Yasemin.; Department of Information Systems (2019)
Hyperspectral imaging systems provide dense spectral information on the scene under investigation by collecting data from a high number of contiguous bands of the electromagnetic spectrum. The low spatial resolutions of these sensors frequently give rise to the mixing problem in remote sensing applications. Several unmixing approaches are developed in order to handle the challenging mixing problem on perspective images. On the other hand, omnidirectional imaging systems provide a 360-degree field of view in...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. O. Baskurt, Y. BAŞTANLAR, and Y. Çetin, “Catadioptric hyperspectral imaging, an unmixing approach,”
IET COMPUTER VISION
, pp. 493–504, 2020, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/70039.