Introduction to Real Analysis (Math 349)

Course Content LUB Property of real numbers. Compactness, connectedness, limits and continuity in metric spaces. Sequences and series of scalars, complete metric spaces, limsup. Sequences and series of functions, uniform convergence, applications.


A note on divisor class groups of degree zero of algebraic function fields over finite fields
Özbudak, Ferruh (Elsevier BV, 2003-01-01)
We give tight upper bounds on the number of degree one places of an algebraic function field over a finite field in terms of the exponent of a natural subgroup of the divisor class group of degree zero.. (C) 2002 Elsevier Science (USA). All rights reserved.
On the arithmetic exceptionality of polynomial mappings
Küçüksakallı, Ömer (2018-02-01)
In this note we prove that certain polynomial mappings P-g(k) (x) is an element of Z[x] in n-variables obtained from simple complex Lie algebras g of arbitrary rank n1, are exceptional.
On the special values of monic polynomials of hypergeometric type
Taşeli, Hasan (Springer Science and Business Media LLC, 2008-01-01)
Special values of monic polynomials y(n)(s), with leading coefficients of unity, satisfying the equation of hypergeometric type
An answer to a question of Cao, Reilly and Xiong
Ercan, Z.; Onal, S. (Institute of Mathematics, Czech Academy of Sciences, 2006-01-01)
We present a simple proof of a Banach-Stone type Theorem. The method used in the proof also provides an answer to a conjecture of Cao, Reilly and Xiong.
A note on a theorem of Dwyer and Wilkerson
Öztürk, Semra (Springer Science and Business Media LLC, 2001-01-03)
We prove a version of Theorem 2.3 in [1] for the non-elementary abelian group Z(2) x Z(2n), n greater than or equal to 2. Roughly, we describe the equivariant cohomology of (union of) fixed point sets as the unstable part of the equivariant cohomology of the space localized with respect to suitable elements of the cohomology ring of Z(2) x Z(2n).
Citation Formats
Y. Ozan, “Introduction to Real Analysis (Math 349),” 00, 2020, Accessed: 00, 2021. [Online]. Available: