A closed-loop flight control experiment using active flow control actuators

Kutay, Ali Türker
Culp, John R.
Muse, Jonathan A.
Brzozowski, Daniel P.
Glezer, Ari
Calise, Anthony J.
Closed-loop pitch control on a moving 1-DOF wing model is investigated in wind tunnel experiments. The model's attitude is controlled over a broad range of angles of attack when the baseline flow is fully attached using bi-directional pitching moment that is effected by flow-controlled trapped vorticity concentrations on the pressure and suction surfaces near the trailing edge. In the present work, the model is trimmed using a position feedback loop and a servomotor actuator. Once the model is trimmed, the position feedback loop is opened and the servomotor acts like an inner loop control to alter the dynamic characteristics and to introduce disturbances. Position control of the model is achieved by the flow control actuation using an arbitrary reference model based adaptive outer loop controller. The control architecture employs a neural network based adaptive element that permits adaptation to both parametric uncertainty and unmodeled dynamics.
Citation Formats
A. T. Kutay, J. R. Culp, J. A. Muse, D. P. Brzozowski, A. Glezer, and A. J. Calise, “A closed-loop flight control experiment using active flow control actuators,” Reno, NV; United States, 2007, vol. 2, p. 1289, Accessed: 00, 2021. [Online]. Available: https://arc.aiaa.org/doi/10.2514/6.2007-114.