Genetic Algorithm based aerodynamic shape optimization tool for wind turbine blades and its implementation to helicopter blades

Polat, Özge
Sezer-uzol, Nilay
Tuncer, İsmail Hakkı
This study presents a methodology first built up for the aerodynamic shape optimization for wind turbine rotors and its modified version for a helicopter rotor in hover. The Genetic Algorithm (GA) coupled with an in-house Blade Element Momentum (BEM) tool is used in the design optimization process. The wind turbine blade optimization studies are performed for maximizing the power production at a given wind speed, rotor speed and rotor diameter, while for the helicopter blade optimization in hover, figure of merit is considered. The airfoil profiles along the span are defined by high order Bezier curves, and the control points of the curves are taken as the design variables. The chord length distribution and the twist distribution are also defined by Bezier splines. The sectional aerodynamic loads needed by the BEM method are obtained by using the potential flow solver with a boundary layer model, XFOIL. The BEM calculations for each individual in the GA population may be computed in parallel using OpenMPl. The BEM tool developed is validated with the available wind turbine and helicopter blade aerodynamic data and then design optimization studies are successfully performed. © 2014 by the American Helicopter Society International, Inc. All rights reserved.


Genetic algorithm based aerodynamic shape optimization of wind turbine rotor blades using a 2-d panel method with a boundary layer solver
Polat, Özge; Tuncer, İsmail Hakkı; Sezer Uzol, Nilay; Department of Aerospace Engineering (2011)
This thesis presents an aerodynamic shape optimization methodology for rotor blades of horizontal axis wind turbines. Genetic Algorithm and Blade Element Momentum Theory are implemented in order to find maximum power production at a specific wind speed, rotor speed and rotor diameter. The potential flow solver, XFOIL, provides viscous aerodynamic data of the airfoils. Optimization variables are selected as the sectional chord length, the sectional twist and the blade profiles at root, mid and tip regions of...
Experimental investigation of the effects of tip-injection on the aerodynamic loads and wake characteristics of a model horizontal axis wind turbine rotor
Abdulrahim, Anas; Uzol, Oğuz; Department of Aerospace Engineering (2014)
In this study, tip injection is implemented on a model Horizontal Axis Wind Turbine (HAWT) rotor to investigate the power and thrust coefficient variations as well as the wake characteristics. The model wind turbine has a 0.95 m diameter 3-bladed rotor with non-linearly twisted and tapered blades that has NREL S826 profile. The nacelle, hub and the blades are specifically designed to allow pressurized air to pass through and get injected from the tips while the rotor is rotating. The experiments are perform...
Aerodynamic modeling and parameter estimation of a quadrotor helicopter
Kaya, Derya; Kutay, Ali Türker (2014-01-01)
This study focuses on aerodynamic modeling of a quadrotor helicopter and the estimation of the model parameters in wind tunnel tests for hover, vertical climb, and forward flight conditions. The motion of a quadrotor is mainly affected by the aerodynamic forces and moments generated by rotors. Accurate calculation of rotor loads is essential for high fidelity simulation of a quadrotor. Momentum and blade element theories are used to obtain expressions for rotor forces and moments for a traveling vehicle. Th...
Modeling and experimental identification of quadrotor aerodynamics
Kaya, D. Derya; Kutay, Ali Türker; Department of Aerospace Engineering (2014)
The aim of this study is to obtain mathematical models for aerodynamic forces and moments of rotors of a quadrotor helicopter, and estimate their parameters through wind tunnel tests for hover, vertical climb, and forward flight conditions. The main factors which determine the movement of a quadrotor UAV are the aerodynamic forces and moments in three axes created by four rotors of the vehicle. Hence, accurate calculation of rotor forces and moments in varying flight conditions are essential to establish a ...
Experimental Investigation of Aerodynamics of Flapping-Wing Micro-Air-Vehicle by Force and Flow-Field Measurements
Deng, Shuanghou; Perçin, Mustafa; van Oudheusden, Bas (2016-02-01)
This study explores the aerodynamic characteristics of a flapping-wing micro aerial vehicle (MAV) in hovering configuration by means of force and flowfield measurements. The effects of flapping frequency and wing geometry on force generation were examined using a miniature six-component force sensor. Additional high-speed imaging allowed identification of the notable different deformation characteristics of the flexible wings under vacuum condition in comparison to their behavior in air, illustrating the re...
Citation Formats
Ö. Polat, N. Sezer-uzol, and İ. H. Tuncer, “Genetic Algorithm based aerodynamic shape optimization tool for wind turbine blades and its implementation to helicopter blades,” 2014, vol. 4, Accessed: 00, 2021. [Online]. Available: