Sensory Weighting in a Rhythmic Ball Bouncing Task

Nickl, Robert
Ankaralı, Mustafa Mert
Cowan, Noah
The role of sensory information in walking remains unclear despite its relevance to understanding human locomotor deficits and as a source of insight for robotics. System identification experiments using sinusoidal perturbations of a visual scene have yielded insights into control of human standing posture [2]. We propose a framework through which similar techniques can be used to identify estimator and controller structures used by humans during rhythmic movement. A key challenge in translating these techniques to human walking is the high number of degrees of freedom involved. To address this, we examine paddle juggling (Figure 1) as a useful starting point to study control of rhythmic movements. Paddle juggling is much simpler than behaviors such as walking and running [1, 3] and yet preserves much of the essential nature of locomotion, such as its hybrid dynamical structure
Citation Formats
R. Nickl, M. M. Ankaralı, and N. Cowan, “Sensory Weighting in a Rhythmic Ball Bouncing Task,” presented at the Dynamic Walking (21 - 24 Temmuz 2015), Ohio, United States Of America, 2015, Accessed: 00, 2021. [Online]. Available: