Determination of Deformation Distributions in Welded Steel Tension Elements Using Digital Image Technigues

2010-09-27
Sözen, Şahin
Güler, Murat
It is known that material properties, connection quality and manufacturing methods are among the important factors directly affecting the behavior of steel connections and hence steel structures. The possible performance differences between a fabricated connection and its computer model may cause critical design problems for steel structures. Achieving a reliable design depends, however, on how accurately the material properties and relevant constitutive models are considered to characterize the behavior of structures. Conventionally, the stress and strain fields in structural steel connections are calculated using the finite elements method with assumed material properties and constitutive models. Because the conventional strain gages allow the measurement of deformation only at one point and direction for specific time duration, it is not possible to determine the general characteristics of stress-strain distributions in connections after the laboratory performance tests. In this study, a new method is introduced to measure displacement distribution of simple steel welded connections under tension tests. The method is based on analyzing digital images of connection specimens taken periodically during the laboratory tension test. By using this method, displacement distribution of steel connections can be calculated with an acceptable precision for the tested connections. Calculated displacements based on the digital image correlation method are compared with those calculated using the finite elements method.
9th International Congress on Advances in Civil Engineering, (2010)

Suggestions

Determination of the Tensile Strength of Different Fiber Reinforced Concrete Mixtures
Ardoğa, Mehmet Kemal; Alam, Burhan; Yaman, İsmail Özgür (null; 2016-09-21)
Enhancing the tensile performance of concrete is the main advantage when fibers are added to this type of building materials. This improvement is usually measured through indirect methods like bending or split-tensile tests, in a way similar to normal concrete due to the absence of a standard tensile test for such purpose. Naturally, this type of tests does not determine the real tensile strength of the fiber reinforced concrete. Hence an important parameter, that is needed in modelling and designing proces...
Determination of the 1st buckling and collapse loads for integrally stiffened panels by artificial neural network and design of experiment methodology
Güzel, Selçuk; Gürses, Ercan (2021-01-22)
Buckling is a structural instability that load carrying capacity of a structural element may suddenly decrease. This sudden change in the load carrying capacity may cause catastrophic failures. Therefore, determination of the first buckling and collapse loads of structural elements is essential. FE analyses and structural testing are used to determine buckling characteristics of a structural element. However, in early design stages, FE analyses are time consuming and structural testing is costly. In this pa...
Evaluation of seismic response modification factors for steel frames by non-linear analysis
Bakır, Serhan; Yılmaz, Çetin; Department of Civil Engineering (2006)
In this study steel framing systems are investigated with regards to their lateral load carrying capacity and in this context seismic response modification factors of individual systems are analyzed. Numerous load resisting layouts, such as different bracing systems and un-braced moment resisting frames with various bay and story configurations are designed and evaluated in a parametric fashion. Three types of beam to column connection conditions are incorporated in evaluation process. Frames, designed acco...
Determination of cracking related properties of engineering cementitious composites
Keskin, Süleyman Bahadır; Şahmaran, Mustafa; Yaman, İsmail Özgür (null; 2017-09-12)
Engineered Cementitious Composites (ECC) are relatively new types of fiber reinforced cementitious materials with enhanced mechanical properties such as tensile strain hardening accompanying high tensile strain capacity. This is mainly attributed to close and multiple cracks with widths remaining under 60 µm which contributes to durability of ECC material. These properties are only achievable as a result of a micro-mechanical design that requires special ingredients that make ECC costly to be used alone, ho...
A detailed analysis for evaluation of the degradation characteristics of simple structural systems
Kurtman, Burak; Erberik, Murat Altuğ; Department of Civil Engineering (2007)
Deterioration in the mechanical properties of concrete, masonry and steel structures are usually observed under repeated cyclic loading in the inelastic response range. Therefore such a behavior becomes critical when these types of structures are subjected to ground motions with specific characteristics. The objective of this study is to address the influence of degrading behavior on simple systems. The Structural Performance Database on the PEER web site, which contains the results of cyclic, lateral-load ...
Citation Formats
Ş. Sözen and M. Güler, “Determination of Deformation Distributions in Welded Steel Tension Elements Using Digital Image Technigues,” presented at the 9th International Congress on Advances in Civil Engineering, (2010), 2010, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/72969.