Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Determination of cracking related properties of engineering cementitious composites
Date
2017-09-12
Author
Keskin, Süleyman Bahadır
Şahmaran, Mustafa
Yaman, İsmail Özgür
Metadata
Show full item record
Item Usage Stats
215
views
0
downloads
Cite This
Engineered Cementitious Composites (ECC) are relatively new types of fiber reinforced cementitious materials with enhanced mechanical properties such as tensile strain hardening accompanying high tensile strain capacity. This is mainly attributed to close and multiple cracks with widths remaining under 60 µm which contributes to durability of ECC material. These properties are only achievable as a result of a micro-mechanical design that requires special ingredients that make ECC costly to be used alone, however it is possible to use ECC together with other construction materials such as steel and concrete. On the other hand, as a result of abundant binders and low water to binder ratio, ECC shrink more compared to other construction materials. In this paper, shrinkage properties including restrained shrinkage of four different ECC mixtures are determined along with the tensile creep behavior. Furthermore a new setup with the method and procedure to determine the tensile creep is given in details.
URI
https://hdl.handle.net/11511/86217
Conference Name
Proceedings of the 2nd International RILEM/COST Conference on Early Age Cracking and Serviceability in Cement-based Materials and Structures, 12 - 14 Eylül 2017
Collections
Department of Civil Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Investigation of structural and electronic properties of ZnCdTe ternary alloy nanostructures
Kurban, Mustafa; Erkoç, Şakir; Department of Physics (2016)
Nanostructures, including II-VI compound semiconductors, have attracted enormous attention in a wide range of applications of nanotechnology due to the unusual mechanical, electrical and thermal properties under varying size, geometry, temperature and pressure when compared to corresponding bulk materials. However, these properties are not directly measurable by experiments because of the methods or the availability of the experimental tools, so theoretical models and computations play an important role in ...
Investigation of novel geometrical design concepts for damping treatments
Çavuş, Bertuğhan; Özgen, Gökhan Osman; Department of Mechanical Engineering (2022-11)
Surface damping treatment concepts are developed utilizing viscoelastic materials as a damping layer where it is applied to the main structure. The main aim for adding these materials is to increase cyclic deformation in the frequency region of interest, which increases dissipated energy from the main structure. Constrained layer damping treatment is the most common, where the viscoelastic layer is constrained by a stiff top layer. Recently, a spacer or standoff layer has been added between the base and con...
Determination of mechanical properties of hybrid fiber reinforced concrete
Yurtseven, Alp Eren; Tokyay, Mustafa; Department of Civil Engineering (2004)
Fiber reinforcement is commonly used to provide toughness and ductility to brittle cementitious matrices. Reinforcement of concrete with a single type of fiber may improve the desired properties to a limited level. A composite is termed as hybrid, if two or more types of fibers are rationally combined to produce a composite that derives benefits from each of the individual fibers and exhibits a synergetic response. This study aims to characterize and quantify the mechanical properties of hybrid fiber reinfo...
Synthesis and characterization of Ti-based bulk amorphous/naocrystalline alloys for engineering applications
Abdelal, Ali; Akdeniz, Mahmut Vedat; Department of Metallurgical and Materials Engineering (2004)
Amorphous and bulk amorphous metallic alloys are an intriguing class of structural materials and possess a range of interesting properties, including near theoretical strength, high hardness, extremely low damping characteristics, excellent wear properties, high corrosion resistance, low shrinkage during cooling and almost perfect as-cast surfaces with good potential for forming and shaping. In this study, new Ti-based bulk amorphous alloys are tried to be modeled and synthesized. For that purpose, electron...
Experimental investigation of CNT effect on curved beam strength and interlaminar fracture toughness of CFRP laminates
Arca, M. A.; Çöker, Demirkan (2014-06-20)
High mechanical properties and light weight structures of composite materials and advances in manufacturing processes have increased the use of composite materials in the aerospace and wind energy industries as a primary load carrying structures in complex shapes. However, use of composite materials in complex geometries such as L-shaped laminates creates weakness at the radius which causes delamination. Carbon nanotubes (CNTs) is preferred as a toughening materials in composite matrices due to their high m...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. B. Keskin, M. Şahmaran, and İ. Ö. Yaman, “Determination of cracking related properties of engineering cementitious composites,” 2017, p. 861, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/86217.