Experimental and computational models for simulating sound propagation and acoustic source localization within the lungs

2006-11-10
Serhan, Açıkgöz
Özer, Mehmet Bülent
Thomas J, Royston
Hanson A, Mansy
Sandler, Rıchard H
An acoustic boundary element (BE) model for porous compliant material like the lung parenchyma is developed and validated theoretically and experimentally. This BE model is coupled with a source localization algorithm to predict the position of an acoustic source within a lung phantom. The BE model is also coupled with a finite element (FE) model to simulate the surrounding shell-like chest wall. Experimental studies validate the BE-based source localization algorithm and show that the same algorithm fails if the BE simulation is replaced with a free field assumption that neglects reflections and standing wave patterns created within the finite-size lung phantom. This research is relevant to the development of advanced auscultatory techniques for lung, vascular and cardiac sounds within the torso that utilize multiple noninvasive sensors to create acoustic images of the sound generation and transmission to identify certain pathologies.
ASME 2006 International Mechanical Engineering Congress and Exposition

Suggestions

Dynamic analysis of beams with breathing crack using finite element method
Özkan, Berkay; Kadıoğlu, Fevzi Suat; Department of Mechanical Engineering (2017)
Non-linear dynamic characteristics of a beam with a breathing crack are investigated using finite element method. This thesis has two main objectives: (1) to obtain a foresight for the vibration based crack detection by using finite element method (2) to investigate the effects of crack location, crack depth, excitation frequency, excitation amplitude and boundary conditions on the indications of crack presence. Two dimensional finite element approach is used to model a square cross sectional beam subjected...
Numerical analysis of thermo-mechanical behavior in flow forming
Günay, Enes; Fenercioglu, Tevfik Ozan; Yalçınkaya, Tuncay (2021-01-01)
Flow forming is a metal forming process for cylindrical workpieces where high velocity deformation leads to radial thinning and axial extension. In the current study, a thermomechanical, dynamic and explicit finite element model of a flow forming process is developed on ABAQUS software. The model is validated through the comparison of reaction forces and geometry obtained from the experiments. Coolant convection effect is analyzed in conjunction with roller and mandrel conduction cooling to study the therma...
Design and modeling elastomeric vibration isolators using finite element method
Ardıç, Halil; Özgen, Gökhan Osman; Özkan, Sami Samet; Department of Mechanical Engineering (2013)
In this thesis, a process is developed for designing elastomeric vibration isolators in order to provide vibration isolation for sensitive equipment being used in ROKETSAN A.Ş.’s products. For this purpose, first of all, similar isolators are examined in the market. After that, appropriate elastomeric materials are selected and their temperature and frequency dependent dynamic properties are experimentally obtained. Parametric finite element model of the isolator is then constituted in ANSYS APDL using the ...
Investigating the mechanical properties of single walled carbon nanotube reinforced epoxy composite through finite element modelling
Zuberi, Muhammad Jibran Shahzad; Esat, Volkan (2015-03-15)
Varying experimental results on the mechanical properties of carbon nanotube reinforced polymer composites (CNTRPs) have been reported due to the complexities associated with the characterization of material properties in nano-scale. Insight into the issues associated with CNTRPs may be brought through computational techniques time- and cost-effectively. In this study, finite element models are generated in which single walled carbon nanotube models are embedded into the epoxy resin. For modelling interface...
Evaluating the effects of size and chirality on the mechanical properties of single-walled carbon nanotubes through equivalent-continuum modelling
Zuberi, M. Jibran S.; Esat, Volkan (2016-10-01)
Due to numerous difficulties associated with the experimental investigation of the single-walled carbon nanotubes (SWNTs), computational modelling is considered to be a powerful alternative in order to determine their mechanical properties. In this study, a novel three-dimensional finite element model incorporating a beam element with circular cross section is developed based on equivalent-continuum mechanics approach. The beam elements are used as the replacement of C-C chemical bonds in modelling SWNTs. F...
Citation Formats
A. Serhan, M. B. Özer, R. Thomas J, M. Hanson A, and R. H. Sandler, “Experimental and computational models for simulating sound propagation and acoustic source localization within the lungs,” 2006, p. 55, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/73646.