Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Thermodynamic analysis of gas/steam combined cycle power plants
Download
116426.pdf
Date
2001
Author
Savruk, Nurettin
Metadata
Show full item record
Item Usage Stats
145
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/7378
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Thermodynamic and economic analysis of a solar thermal powered adsorption cooling system
Demirocak, Derviş Emre; Baker, Derek Keıth; Department of Mechanical Engineering (2008)
In this thesis, yearly performance of the solar adsorption cooling system which is proposed to be installed to a residential building in Antalya is theoretically investigated in detail. Firstly, thermodynamic designs of the adsorption cooling cycle for three different types of cycles which are intermittent, heat recovery and heat & mass recovery cycles are presented. Secondly, adsorption characteristics of three adsorbent/adsorbate pairs which are zeolite-water, silica gel-water and activated carbon-methano...
Thermodynamic and thermoeconomic comparison of combined cycle cogeneration systems
Colpan, Can O.; Yesin, Tulay (2006-01-01)
In this paper, several configurations of combined cycle cogeneration systems are investigated by energy, exergy and thermoeconomic analyses. In each of these configurations, varying steam demand is considered rather than fixed steam demand. Among the different approaches for thermoeconomic analysis in the literature, the specific exergy costing method is applied. Since the systems have more than one product (process steam and electrical power), systems are divided into several sub-systems and cost balances ...
Thermodynamic modelling of a solar-assisted water-lithium bromide absorption heat pump for floor heating systems
Kesen, Burak; Yamalı, Cemil; Department of Mechanical Engineering (2000)
Thermodynamic and structural design and analysis of a novel turbo rotary engine
Ercan, Taylan; Akmandor, İbrahim Sinan; Department of Aerospace Engineering (2005)
A novel turbo rotary engine, operating according to a novel thermodynamic cycle, having an efficient compression phase, a limited temperature combustion phase followed by a long power extraction phase is designed. Thermodynamic and structural design and analysis of this novel engine is carried out and two prototypes are manufactured according to these analysis. High performance figures such as torque, power and low specific fuel consumption are calculated. Also the component tests of the manufactured protot...
Thermodynamic limits to thermal regeneration in adsorption cooling cycles
Baker, Derek Keıth (Elsevier BV, 2008-01-01)
Energy and exergy models for ideal adsorption cycles with isothermal beds and no mass recovery are developed to predict the limits to COP enhancement using thermal regeneration. The models are applied to compare the performance of zeolite-water and silica gel-water adsorbent-refrigerant pairs over a range of maximum bed temperatures. The thermodynamic consistencies of several alternate adsorption property assumptions are quantified. Differences in adsorption characteristics between zeolite-water and silica ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. Savruk, “Thermodynamic analysis of gas/steam combined cycle power plants,” Middle East Technical University, 2001.