Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Thermodynamic limits to thermal regeneration in adsorption cooling cycles
Date
2008-01-01
Author
Baker, Derek Keıth
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
Energy and exergy models for ideal adsorption cycles with isothermal beds and no mass recovery are developed to predict the limits to COP enhancement using thermal regeneration. The models are applied to compare the performance of zeolite-water and silica gel-water adsorbent-refrigerant pairs over a range of maximum bed temperatures. The thermodynamic consistencies of several alternate adsorption property assumptions are quantified. Differences in adsorption characteristics between zeolite-water and silica gel-water result in a significantly larger potential to enhance COP by implementing thermal regeneration for zeolite-water. Based on COP, the zeolite-water pair is preferred when both thermal regeneration and a high temperature thermal energy source (>150 degrees C) are used, while the silica gel-water pair is preferred when thermal regeneration is not used and/or a low temperature thermal energy source (<100 degrees C) is used. (c) 2007 Elsevier Ltd and IIR. All rights reserved.
Subject Keywords
Mechanical Engineering
,
Building and Construction
URI
https://hdl.handle.net/11511/46359
Journal
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID
DOI
https://doi.org/10.1016/j.ijrefrig.2007.09.001
Collections
Department of Mechanical Engineering, Article