Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Comparative Study on Distance Metrics in Self- Supervised Unstructured Road Detection Domain
Date
2013-09-20
Author
Özütemiz, Kadri Buğra
Hacınecipoğlu, Akif
Koku, Ahmet Buğra
Konukseven, Erhan İlhan
Metadata
Show full item record
Item Usage Stats
187
views
0
downloads
Cite This
In pattern recognition/machine learning domain, selecting appropriate distance metric for the problem to find the distance between feature vectors or the distance between a feature vector and decision boundary is important in order to have satisfying results from the algorithm designed. In this study, in order to find the most appropriate distance metric to use in classification of road/non-road regions in streaming images, 6 different distance metrics are implemented and their classification performances are compared. The 6 distance metrics that are compared in the road detection domain are Manhattan distance, Euclidian distance, Mahalanobis distance, Chebyshev distance, Hellinger distance and Chi-square distance metrics, respectively.
Subject Keywords
Distance metrics
,
Unstructured road detection
,
Pattern recognition
,
Machine learning
URI
https://hdl.handle.net/11511/74076
Conference Name
Mechatronics and Machine Vision in Practice, M2VIP, 2013
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Towards finding optimal mixture of subspaces for data classification
Musa, Mohamed Elhafiz Mustafa; Atalay, Mehmet Volkan; Department of Computer Engineering (2003)
In pattern recognition, when data has different structures in different parts of the input space, fitting one global model can be slow and inaccurate. Learning methods can quickly learn the structure of the data in local regions, consequently, offering faster and more accurate model fitting. Breaking training data set into smaller subsets may lead to curse of dimensionality problem, as a training sample subset may not be enough for estimating the required set of parameters for the submodels. Increasing the ...
Efficient performance computations for trellis-coded modulation
Abou Rajab, H; Yucel, MD (1999-06-01)
In this letter, the algorithm given by Rouanne and Costello for the computation of the distance spectrum is improved for trellis-coded modulation schemes having uncoded bits, i.e., for trellis diagrams having parallel paths, It is shown that, when through a trellis corresponding to such kind of codes, all parallel transitions (labeled by signal selectors) between states are considered as a single branch labeled by a subset, then defining subset selector distance polynomials makes the computational complexit...
Deep Metric Learning With Alternating Projections Onto Feasible Sets
Can, Oğul; Gürbüz, Yeti Z.; Alatan, Abdullah Aydın (2021-01-01)
Minimizers of the typical distance metric learning loss functions can be considered as "feasible points" satisfying a set of constraints imposed by the training data. We reformulate distance metric learning problem as finding a feasible point of a constraint set where the embedding vectors of the training data satisfy desired intra-class and inter-class proximity. The feasible set induced by the constraint set is expressed as the intersection of the relaxed feasible sets which enforce the proximity constrai...
A Buffer Zone Computation Algorithm for Corridor Rendering in GIS
Er, Emre; Kilinc, Ismail; Gezici, Goerkem; Baykal, Buyurman (2009-09-16)
This work defines a corridor rendering algorithm with variable leg buffer distances and the algorithm also supports geographic world model. A corridor is defined by a path and two distances for each leg to make a buffered zone around the path. Rendering of a corridor is a challenging task in GIS applications. Corridor is extensively used on mission computer displays on command and control platforms and civilian air control centers. Line buffering [1] and offset curve [2] approximations are the special case ...
A 2-D unsteady Navier-Stokes solution method with overlapping/overset moving grids
Tuncer, İsmail Hakkı (1996-01-01)
A simple, robust numerical algorithm to localize intergrid boundary points and to interpolate unsteady solution variables across 2-D, overset/overlapping, structured computational grids is presented. Overset/ overlapping grids are allowed to move in time relative to each other. The intergrid boundary points are localized in terms of three grid points on the donor grid by a directional search algorithm. The final parameters of the search algorithm give the interpolation weights at the interpolation point. Th...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. B. Özütemiz, A. Hacınecipoğlu, A. B. Koku, and E. İ. Konukseven, “A Comparative Study on Distance Metrics in Self- Supervised Unstructured Road Detection Domain,” presented at the Mechatronics and Machine Vision in Practice, M2VIP, 2013, Ankara, Türkiye, 2013, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/74076.