Preliminary Geochemical Data for the Diabase Dykes from theIzmir-Ankara-Erzincan Suture Belt, Central Anatolia

2017-04-23
Balcı, Uğur
Sayıt, Kaan
The Izmir-Ankara-Erzincan Suture Belt preserves oceanic and continental fragments originated from the closure of the northern branch of Neotethys. In the Bogazkale area (Central Anatolia), the pieces of the Neotethyan oceanic lithosphere exist in a chaotic manner, forming an ophiolitic mélange. Within the mélange, diabase dykes occur, which are found to cut various types of oceanic lithospheric rocks, including pillow basalts, gabbros and serpentinized ultramafics. We here present the preliminary geochemical results obtained from the diabase dykes and put some constraints on their petrogenesis. The investigated diabase dykes are chiefly composed of plagioclase and a mafic phase, which is clinopyroxene and/or hornblende. A detailed examination reveals two petrographic types on the basis of predominating mafic mineral phase, namely clinopyroxene-dominated Type 1, and hornblende-dominated Type 2. Ophitic to sub-ophitic textures, where lath-shaped plagioclase crystals are enclosed by clinopyroxene, can be observed in almost all Type 1 dykes. In Type 2 samples, altered mafic phases can be seen enclosed within plagioclase crystals, forming poikilitic texture. Polysynthetic twinning is common in plagioclase. Hornblende occasionally displays simple twinning. Both types appear to have been variably affected by low-grade hydrothermal alteration as reflected by the presence of secondary mineral phases, such as chlorite, epidote, prehnite, and actinolite. The whole-rock geochemistry appear to be consistent with the petrographical grouping, revealing distinct immobile trace element systematics for the two types. Both types have basaltic composition with sub-alkaline characteristics (Nb/Y=0.2-0.3 for Type 1; Nb/Y=0.02-0.08 for Type 2). The relatively low MgO contents of the dykes suggest that they do not represent primary magmas, but evolved through fractionation of mafic phases. In the N-MORB normalized diagrams, Type 2 diabases exhibit marked negative Nb anomalies, with HFSE abundances around or slightly more enriched than N-MORB. Type 1 diabases, on the other hand, do not possess any negative Nb anomalies and display enrichment in highly incompatible elements. In the chondrite-normalized diagrams, Type 1 diabases display slight LREE enrichment relative to HREE, whereas Type 2 diabases show flat to slightly LREE-depleted patterns. The N-MORB-like Nb contents of Type 2 dykes suggest that they have been derived from depleted asthenopheric mantle source. The marked enrichment of Th and La over Nb indicates that their source has been metasomatized by slab-derived fluids/melts. However, the enrichment in highly incompatible elements in Type 1 dykes implies their derivation from a relatively enriched source region and/or small degrees of partial melting. Trace element systematics suggest that Type 2 diabases may have formed in an oceanic back-arc basin environment, whereas Type 1 diabases have been generated in a mid-ocean ridge or alternatively in an oceanic back-arc basin.

Suggestions

Geochemistry and petrogenesis of the diabase dykes from the Boğazkale region (Çorum, Central Anatolia)
Balcı, Uğur; Sayıt, Kaan; Department of Geological Engineering (2018)
The Izmir-Ankara-Erzincan (IAE) Suture Belt contains oceanic and continental fragments derived from the northern branch of Neotethys and associated continental entities. In the Boğazkale region (Çorum, Central Anatolia), the pieces of Neotethyan oceanic lithosphere are present in a chaotic manner, and form an ophiolitic mélange. Diabase dykes are observed in the mélange, which cross-cut various rock types of oceanic lithosphere, such as pillow basalts, gabbros and ultramafics. This study aims to investigate...
Surface characteristics, mineralogy and geochemistry of the gicik low–sulfidation epithermal au deposit (Ankara province, central anatolia)
Çil, Akın; İmer, Ali; Department of Geological Engineering (2019)
Tethyan-Eurasian Metallogenic Belt was formed as a result of the Mesozoic-Cenozoic Alpine-Himalayan orogeny related to the opening and closure of the Tethyan ocean basins. Turkey forms a sector of this extensive belt, and hosts numerous precious and base metal deposits. Gicik Au mineralization is located at Sakarya zone and approximately 15 km north of Ankara. Gold mineralization is hosted within Middle Eocene (ca. 44 Ma) intermediate composition dacitic lavas and agglomerates that are widely exposed near A...
Carnian (Upper Triassic) Lavas and Tuffites from the Mersin Melange: Evidence for Intraoceanic Arc Rifting in the Northern Neotethys
Sayıt, Kaan; TEKİN, UĞUR KAĞAN; Okuyucu, Cengiz (University of Chicago Press, 2020-09-01)
In Anatolia, the northern branch of Neotethys is represented by Izmir-Ankara-Erzincan (IAE) Ocean, whose fragments and associated continental entities are preserved in the IAE Suture. However, the traces of this northerly located ocean are not solely bound to the IAE Suture, but can also be found further to the south. The Mersin Melange, situated in southern Turkey, is such a place that preserves the southerly transported remnants of the northern Neotethys. The Mersin Melange essentially displays block-in-m...
Whole-Rock and Nd-Pb isotope geochemistry and radiolarian ages of the volcanics from the Yüksekova Complex (Maden Area, Elazığ, E Turkey): Implications for a Late Cretaceous (Santonian-Campanian) Back-Arc basin in the southern Neotethys
Ural, Melek; Sayıt, Kaan; TEKİN, UĞUR KAĞAN (2022-01-31)
The Southeast Anatolian Orogenic Belt (SAOB) is characterized by a tectonic assemblage consisting of dismembered ophiolites, subduction-related as-semblages, and continental fragments. Whether the subduction-related volcanic assemblages formed in a Southern Neotethys oceanic arc-basin system (the Yüksekova Complex) or in a back-arc basin (the Maden Complex) originated after the closure of Southern Neotethys is still debated. To shed light on this matter, we focus on the Maden area, known as the type localit...
Post-Triassic evolution of Central Pontides: evidence from Amasya region, northern Anatolia
Rojay, Fuat Bora (1995-12-01)
The Central Pontides is an orogenic belt evolved since Triassic by the progressive closure of Paleo- and Neo-Tethys oceans, which is bounded by the IzmirAnkara-Erzincan Suture (Northern Neotethyan Suture) from the south. The post-Triassic Neo-Tethyan evolution in Amasya region started with Liassic transgression on the rifted pre-Liassic basement rocks. Later, the initial rifting failed and the platform was uplifted. The uplifted platform turned into an open-marine depositional realm as recorded by the depos...
Citation Formats
U. Balcı and K. Sayıt, “Preliminary Geochemical Data for the Diabase Dykes from theIzmir-Ankara-Erzincan Suture Belt, Central Anatolia,” 2017, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/74265.