Geochemistry and petrogenesis of the diabase dykes from the Boğazkale region (Çorum, Central Anatolia)

Download
2018
Balcı, Uğur
The Izmir-Ankara-Erzincan (IAE) Suture Belt contains oceanic and continental fragments derived from the northern branch of Neotethys and associated continental entities. In the Boğazkale region (Çorum, Central Anatolia), the pieces of Neotethyan oceanic lithosphere are present in a chaotic manner, and form an ophiolitic mélange. Diabase dykes are observed in the mélange, which cross-cut various rock types of oceanic lithosphere, such as pillow basalts, gabbros and ultramafics. This study aims to investigate the geochemical and petrogenetic features of the diabase dykes, and their importance in the Neotethyan framework. The investigated diabases are mainly made up of plagioclase and a mafic phase, which is clinopyroxene and/or hornblende. According to predominating mafic mineral phase, the diabases can be subdivided into two types as clinopyroxene- and hornblende-diabase. Sub-ophitic textures are common in all clinopyroxene-diabase samples and poikilitic texture in almost all hornblende-diabase samples. Both types are variably modified by low-grade hydrothermal alteration as reflected by the presence of secondary minerals, such as chlorite, epidote, prehnite and actinolite. vi The immobile trace element systematics reveals two chemical types, which seems consistent with the petrographical grouping. Both chemical types display sub-alkaline basalt characteristics. The relationship of MgO with some major and trace elements suggest that fractional crystallization was important in the magmatic evolution of the dykes. One of the major differences between two types is that while Type 2 diabases possess negative Nb anomalies, this feature is not observed in Type 1. In addition, Type 1 diabases are characterized by slight LREE enrichment, whereas Type 2 diabases display flat to slightly LREE-depleted patterns. Type 2 appears to have derived from a depleted asthenospheric mantle source metasomatized by slab-derived fluids/melts. Geochemical signatures of Type 1, on the other hand, require relatively enriched source region and/or small degrees of partial melting. Trace element systematics of Type 2 is consistent with an origin in an oceanic back-arc basin, whereas Type 1 diabases appear to have been generated in a mid-ocean ridge or an oceanic back-arc basin. 40Ar-39Ar radiometric dating on the amphiboles from two Type 2 samples reveals ages of 176.30 ± 0.52 Ma (Toarcian) and 178.82 ± 0.80 Ma (Toarcian), which suggests the presence of an intra-oceanic subduction zone within IAE Ocean during the Early Jurassic.

Suggestions

Carnian (Upper Triassic) Lavas and Tuffites from the Mersin Melange: Evidence for Intraoceanic Arc Rifting in the Northern Neotethys
Sayıt, Kaan; TEKİN, UĞUR KAĞAN; Okuyucu, Cengiz (University of Chicago Press, 2020-09-01)
In Anatolia, the northern branch of Neotethys is represented by Izmir-Ankara-Erzincan (IAE) Ocean, whose fragments and associated continental entities are preserved in the IAE Suture. However, the traces of this northerly located ocean are not solely bound to the IAE Suture, but can also be found further to the south. The Mersin Melange, situated in southern Turkey, is such a place that preserves the southerly transported remnants of the northern Neotethys. The Mersin Melange essentially displays block-in-m...
Geological evolution of the gediz graben, sw turkey: temporal and spatial variation of the graben
Çiftçi, Bozkurt N; Bozkurt, Erdin; Department of Geological Engineering (2007)
Gediz Graben is a continental extensional basin filled with Neogene sediments. Its margins are controlled by active ~EW-trending fault systems with major system, in terms of total offset and duration of activity, located along the southern margin. The graben evolved as a half graben by the activity of the southern margin during the entire Miocene. Then, the northern margin-bounding structure initiated by PlioQuaternary to form the current configuration of the graben with an inherited asymmetry. The southern...
Preliminary Geochemical Data for the Diabase Dykes from theIzmir-Ankara-Erzincan Suture Belt, Central Anatolia
Balcı, Uğur; Sayıt, Kaan (2017-04-23)
The Izmir-Ankara-Erzincan Suture Belt preserves oceanic and continental fragments originated from the closure of the northern branch of Neotethys. In the Bogazkale area (Central Anatolia), the pieces of the Neotethyan oceanic lithosphere exist in a chaotic manner, forming an ophiolitic mélange. Within the mélange, diabase dykes occur, which are found to cut various types of oceanic lithospheric rocks, including pillow basalts, gabbros and serpentinized ultramafics. We here present the preliminary geochemica...
Geochemistry, tectono-magmatic discrimination and radiolarian ages of basic extrusives within the Izmir-Ankara Suture Belt (NW Turkey): Time constraints for the neotethyan evolution
Göncüoğlu, Mehmet Cemal; Tekin, U. Kagan (2006-06-01)
The Dagkuplu Melange in the Central Sakarya Valley represents the northernmost outcrops of the Izmir-Ankara Suture Belt in northwest Anatolia. In addition to blocks and slivers of serpentinite, gabbro, blueschist, neritic and pelagic limestones, it includes blocks of basic volcanic rocks associated with radiolarian cherts, pelagic carbonates and mudstones.
Geochemistry of mafic lavas from Sivas, Turkey and the evolution of Anatolian lithosphere
KÜRKCÜOĞLU, BİLTAN; Pickard, Megan; Sen, Pinar; Hanan, Barry B.; Sayıt, Kaan; Plummer, Charles; ŞEN, ERDAL; Yurur, Tekin; Furman, Tanya (2015-09-01)
Near-contemporaneous suites of mafic lavas from Sivas, Central Anatolia record different petrogenetic histories on the eastern and western sides of a major regional suture marked by the Kizihrmak River, The Sivas basaltic suite has major and trace element compositions suggesting derivation from an anhydrous peridotitic mantle source region. Basaltic trachyandesites in this group are related by up to similar to 65% fractional crystallization of the observed anhydrous mineral phases from a frequently-erupted ...
Citation Formats
U. Balcı, “Geochemistry and petrogenesis of the diabase dykes from the Boğazkale region (Çorum, Central Anatolia),” M.S. - Master of Science, Middle East Technical University, 2018.