The CFD Investigation of Two Non Aligned Turbines Using Actuator Disk Model and Overset Grids

2014-06-20
Türkal, Mert
Novikov, Yaroslav
Üşenmez, Serdar
Sezer Uzol, Nilay
Uzol, Oğuz
In this study flow over two axially non-aligned wind turbines is investigated via 3-D CFD analysis by solving Navier-Stokes equations. This setting is the test case geometry for the NTNU's "Blind-Test" Workshop 3 (BT3) and it aims to predict the performance of the wind turbines and their wake development under asymmetrical flow conditions. The performance of the turbine in the wake of the other turbine is numerically studied for different tip speed ratios. The measurements of velocity profile which is severely disturbed by both turbines are also carried out at the several locations of the wind tunnel. The computational results for NTNU wind turbine test case were obtained by 3-D CFD simulations with two different approaches. The first approach is to employ the actuator disk model, which is used in order to approximate the pressure jump across the rotor disk to simulate the impact of the wind turbines. At the second approach, the actual geometry of the turbine rotor was used, and the rotor blades were rotated using an overset grid methodology over the background grids. The thrust coefficients and the velocity profiles are calculated with two different approaches and the results are compared to experimental data presented in BT3.
5th Science of Making Torque from Wind Conference (18-20 June 2014)

Suggestions

A Numerical Simulation of non-uniform Magnetic Field Effect on Ferrofluid Flow in a Half-Annulus Enclosure with Sinusoidal Hot Wall
Oglakkaya, F. S.; Bozkaya, Canan (2016-09-25)
In this study, the problem of two-dimensional, laminar ferrofluid flow in a semi-annulus enclosure with sinusoidal hot wall is investigated numerically by using the dual reciprocity boundary element method. The flow is under the influence of a nodal magnetic source placed below the mid of the sinusoidal inner wall. The equations governing the present problem are obtained under the principles of ferrohydrodynamics and magnetohydrodynamics. The numerical computations are performed for various values of Raylei...
Investigations on blade tip tilting for hawt rotor blades using CFD
Elfarra, Monier A.; Sezer Uzol, Nilay; Akmandor, I. Sinan (2015-02-26)
The main purpose of this paper is to study the aerodynamic effects of blade tip tilting on power production of horizontal-axis wind turbines by using Computational Fluid Dynamics (CFD). For validation and as a baseline rotor, the NREL Phase VI wind turbine rotor blade is used. The Reynolds-Averaged Navier-Stokes Equations are solved and different turbulence models including the Spalart-Allmaras, Standard k-ε, k-ε Yang-Shih and SST k-ω models are used and tested. The results are shown in terms of power gener...
An analysis of a linearly extrapolated BDF2 subgrid artificial viscosity method for incompressible flows
Demir, Medine (Elsevier BV, 2020-10-01)
This report extends the mathematical support of a subgrid artificial viscosity (SAV) method to simulate the incompressible Navier-Stokes equations to better performing a linearly extrapolated BDF2 (BDF2LE) time discretization. The method considers the viscous term as a combination of the vorticity and the grad-div stabilization term. SAV method introduces global stabilization by adding a term, then anti-diffuses through the extra mixed variables. We present a detailed analysis of conservation laws, includin...
A subgrid stabilization finite element method for incompressible magnetohydrodynamics
Belenli, Mine A.; Kaya Merdan, Songül; Rebholz, Leo G.; Wilson, Nicholas E. (2013-07-01)
This paper studies a numerical scheme for approximating solutions of incompressible magnetohydrodynamic (MHD) equations that uses eddy viscosity stabilization only on the small scales of the fluid flow. This stabilization scheme for MHD equations uses a Galerkin finite element spatial discretization with Scott-Vogelius mixed finite elements and semi-implicit backward Euler temporal discretization. We prove its unconditional stability and prove how the coarse mesh can be chosen so that optimal convergence ca...
An implicit three-dimensional numerical model to simulate transport processes in coastal water bodies
Balas, L; Ozhan, E (Wiley, 2000-10-30)
A three-dimensional baroclinic numerical model has been developed to compute water levels and water particle velocity distributions in coastal waters. The numerical model consists of hydrodynamic, transport and turbulence model components. In the hydrodynamic model component, the Navier-Stokes equations are solved with the hydrostatic pressure distribution assumption and the Boussinesq approximation. The transport model component consists of the pollutant transport model and the water temperature and salini...
Citation Formats
M. Türkal, Y. Novikov, S. Üşenmez, N. Sezer Uzol, and O. Uzol, “The CFD Investigation of Two Non Aligned Turbines Using Actuator Disk Model and Overset Grids,” Copenhagen; Denmark, 2014, vol. 524, p. 1, Accessed: 00, 2021. [Online]. Available: http://iopscience.iop.org/article/10.1088/1742-6596/524/1/012144/meta.