Investigations on blade tip tilting for hawt rotor blades using CFD

2015-02-26
Elfarra, Monier A.
Sezer Uzol, Nilay
Akmandor, I. Sinan
The main purpose of this paper is to study the aerodynamic effects of blade tip tilting on power production of horizontal-axis wind turbines by using Computational Fluid Dynamics (CFD). For validation and as a baseline rotor, the NREL Phase VI wind turbine rotor blade is used. The Reynolds-Averaged Navier-Stokes Equations are solved and different turbulence models including the Spalart-Allmaras, Standard k-ε, k-ε Yang-Shih and SST k-ω models are used and tested. The results are shown in terms of power generation at different wind speeds and the pressure distribution at different sections of the blade, and the comparisons are made with the available experimental data. For tip tilting analysis, 16 different geometries belonging to four different configurations are studied. The geometries are generated based on changing the twist and the cant angles of the winglet. The four different configurations are obtained from tilting the blade tip toward pressure side, suction side, leading edge, and trailing edge. The effect of the different configurations on the flow characteristics and hence on the power production of the wind turbine is investigated.
International Journal of Green Energy

Suggestions

NREL VI rotor blade: Numerical investigation and winglet design and optimization using CFD
Elfarra, Monier A.; Sezer Uzol, Nilay; Akmandor, I. Sinan (2014-01-01)
The main objectives of this study were to aerodynamically design and optimize a winglet for a wind turbine blade by using computational fluid dynamics (CFD) and to investigate its effect on the power production. For validation and as a baseline rotor, the National Renewable Energy Laboratory Phase VI wind turbine rotor blade is used. The Reynolds-averaged Navier-Stokes equations are solved, and k-ε Launder-Sharma turbulence model was used. The numerical results have shown a considerable agreement with the e...
The aerodynamic effects of blade pitch angle on small horizontal axis wind turbines
Kaya, Mehmet Numan; Uzol, Oğuz; Ingham, Derek; Köse, Faruk; Buyukzeren, Riza (2022-01-01)
© 2022, Emerald Publishing Limited.Purpose: The purpose of this paper is to thoroughly investigate the aerodynamic effects of blade pitch angle on small scaled horizontal axis wind turbines (HAWTs) using computational fluid dynamics (CFD) method to find out the sophisticated effects on the flow phenomena and power performance. Design/methodology/approach: A small HAWT is used as a reference to validate the model and examine the aerodynamic effects. The blade pitch angle was varied between +2 and −6 degrees,...
Effects of tip injection on the performance and near wake characteristics of a model wind turbine rotor
Abdulrahim, Anas; Anik, Ezgi; Ostovan, Yashar; Uzol, Oğuz (2016-04-01)
This paper presents an investigation of the effects of tip injection on the performance and near wake characteristics of a model wind turbine rotor. Experiments are conducted by placing a three-bladed horizontal axis wind turbine rotor at the exit of an open-jet wind tunnel. The rotor blades are non linearly twisted and tapered with NREL 5826 airfoil profile. The nacelle, hub and the blades are specifically designed to allow pressurized air to pass through and get injected from the blade tips while the roto...
Investigation of inertial support limits in wind turbines and the effects on the power system stability
Duymaz, Erencan; Keysan, Ozan; Department of Electrical and Electronics Engineering (2019)
In this study, the inertial support implementation is studied for variable speed wind turbines with a full-scale power electronics. To increase the active power as desired, Machine Side Converter is modified with an additional control loop. In the first part of the thesis, active power of the wind turbine is increased to the limits and the maximum achievable active power is found out to be restricted by the wind speed. It is found that the wind turbine can increase its output power by 40% of rated power in ...
Effect of steady and transient wind shear on the wake structure and performance of a horizontal axis wind turbine rotor
SEZER UZOL, NİLAY; Uzol, Oğuz (2013-01-01)
This paper presents an investigation of the effect of steady and transient free-stream wind shear on the wake structure and performance characteristics of a horizontal axis wind turbine rotor. A new three-dimensional unsteady vortex-panel method potential flow solver based on a free-vortex wake methodology, AeroSIM+, is used for this purpose. The code is validated using the experimental data from the National Renewable Energy Laboratory Unsteady Aerodynamics Experiments. The effects of vortex core model, co...
Citation Formats
M. A. Elfarra, N. Sezer Uzol, and I. S. Akmandor, “Investigations on blade tip tilting for hawt rotor blades using CFD,” International Journal of Green Energy, vol. 12, no. 2, pp. 125–138, 2015, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84919919071&origin=inward.