Application of vapour extraction VAPEX process for light crude oil

2008-01-01
The objective of this study is to investigate the applicability of Vapex process on Garzan crude oil. Experiments were performed with Hele-Shaw cell using two different solvents (propane and butane) at three different injection rates (20, 40, and 80 ml/min). For both Vapex solvents, oil production rates increased with injection rates for Garzan crude oil. Instantaneous asphaltene rate for Garzan oil showed fluctuated performance with propane solvent. Butane showed almost constant degree of asphaltene precipitation. For asphaltene precipitation, propane gave better results than butane in almost all injection rates for Garzan crude oil.
Energy Sources-A

Suggestions

Application of vapex process for light crude oil
Kök, Mustafa Verşan; Akın, Serhat (Informa UK Limited, 2008-01-01)
The objective of this study is to investigate the applicability of Vapex process on Garzan crude oil. Experiments were performed with Hele-Shaw cell using two different solvents (propane and butane) at three different injection rates (20,40, and 80ml/min). For both Vapex solvents, oil production rates increased with injection rates for Garzan crude oil. Instantaneous asphaltene rate for Garzan oil showed fluctuated performance with propane solvent. Butane showed almost constant degree of asphaltene precipit...
Application of vapex (vapour extraction) process on carbonate reservoirs
Yıldırım, Yakut; Kök, Mustafa Verşan; Akın, Serhat; Department of Petroleum and Natural Gas Engineering (2003)
The vapour extraction process, or ءVAPEX̕ has attracted a great deal of attention in recent years as a new method of heavy oil or bitumen recovery. The VAPEX (vapour extraction) can be visualized as energy efficient recovery process for unlocking the potential of high viscosity resources trapped in bituminous and heavy oil reservoirs. A total of 20 VAPEX experiments performed with Hele-Shaw cell utilizing three different Turkish crude oils. Two different VAPEX solvents (propane and butane) were used with th...
Testing Amenability of Oil Shales to Gravitational Cleaning
Altun, Naci Emre (2016-10-23)
This study aims at investigating the possibility of cleaning of oil shales by gravitational methods. Laboratory scale Dense Medium Separation (DMS) tests were applied on Himmetoglu oil shale from Bolu, Türkiye. DMS tests were conducted at a separation specific gravity range of 1.10 to 1.80 with 0.1 increments on size fractionated oil shale samples of -30+18, -18+10, -10+0.5 and -0.5 mm. Results showed that the extent of ash rejection and improvements in calorific values increased with increasing fineness an...
Degradation of decabromodiphenyl ether (BDE-209) in microcosms mimicking sediment environment subjected to comparative bioremediation strategies
Demirtepe, Hale; İmamoğlu, İpek (Elsevier BV, 2019-03-01)
The aim of this study was to examine bioremediation strategies for BDE-209 contaminated sediments. Sediment microcosms were established to observe anaerobic debromination of BDE-209 under conditions representing three bioremediadon strategies: biostimulation, bioaugmentation and natural attenuation. To simulate biostimulation, a defined mineral medium containing both a carbon source (sodium formate) and electron donor (ethanol) was added into sediments. Bioaugmentation was established by enrichment of the s...
Usage of microwave and ultrasound in the extraction of essential oils and phenolic compounds
İnce, Alev Emine; Şahin, Serpil; Şümnü, Servet Gülüm; Department of Food Engineering (2011)
The objective of this study is to extract phenolic compounds from nettle and melissa by using microwave and ultrasound and to compare these methods with conventional extraction and maceration, respectively. Extraction of melissa essential oil was also studied. In extraction of phenolics, effects of extraction time (5-20 min for microwave; 5-30 min for ultrasound) and solid to solvent ratio (1:10, 1:20, 1:30 g/ml) on total phenolic content (TPC) were investigated for microwave and ultrasound extractions. Dif...
Citation Formats
M. V. Kök and S. Akın, “Application of vapour extraction VAPEX process for light crude oil,” Energy Sources-A, pp. 20–26, 2008, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/75564.