Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Microstructure and corrosion characteristics of nickelless stainless steels
Date
2002-06-01
Author
Mehrabov, Amdulla
Aivazov, Bilayet
Aliyev, Maksut
Metadata
Show full item record
Item Usage Stats
85
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/75716
Journal
J. of Physicochemical Mechanics of Materials
Collections
Unverified, Article
Suggestions
OpenMETU
Core
Microstructure and mechanical properties of squeeze cast intermetallic magnesium silicide dispersed aluminum-silicon-magnesium alloys
Soyer, Önder Muzaffer; Sarıoğlu, Filiz; Kalkanlı, Ali; Department of Metallurgical and Materials Engineering (1997)
Microstructure, resistivity, and shear strength of electrically conductive adhesives made of silver-coated copper powder
Hamrah, Z. Sahebi; Lashgari, V. A.; Mohammadi, M. H. Doost; Üner, Deniz; Pourabdoli, M. (2021-12-01)
Electrically conductive adhesives were made using silver-coated copper powders (filler) and epoxy. Resistivity, microstructure and shear strength of prepared adhesives were studied using two-point resistance measurements, Scanning Electron Microscope (SEM) and universal tensile tests, respectively. Effect of filler concentration (70-85 wt%), silver concentration (10-50 wt%), particles morphology (flake or spherical) and addition of graphite (2-15 wt%) were investigated on prepared adhesives properties. Resu...
Microstructural characterization and tensile properties of hot pressed Al-SiC composites prepared from pure Al and Cu powders
Ögel, Bilgehan; Gürbüz, Rıza (2001-03-31)
A conventional hot pressing method was used to produce Al-Cu-SiC particulate metal matrix composites. The matrix alloy was prepared from elemental powders of Al and 5 wt.% Cu. The composite comprises 13.3 or 27.2 vol.% SiCp with an average size of 10 mum. The powder mixtures were hot pressed uniaxially under nitrogen atmosphere. It is shown that Cu aids in the Formation of a liquid phase. Practically pore free structures are obtained after pressing at 600 degreesC, Elastic modulus, tensile strength and yiel...
Microstructure, phase relationships and microhardness of Fe60Al40-nHfn alloys (n=1, 3, and 5 at.%)
Yildirim, Mehmet; Cetinbakis, Nese; Culu, Ayse; Akdeniz, Mahmut Vedat; Mehrabov, Amdulla (2021-04-01)
The microstructural evolution, solidification behavior, phase relationships, microhardness and room temperature magnetic properties of the hypoeutectic Fe60Al40-nHfn (n = 1, 3, and 5 at.%) compositions are investigated in detail. The microstructure of the studied alloys is composed of Fe-Al based dendrites and eutectic mixture. The components of the eutectic are B2 Fe-Al based and HfFe6Al6 tau(1) phases. With increasing Hf fraction, the amounts of eutectic and tau(1) phases increase continuously which resul...
Microstructure and Mechanical Properties of High Dose Self-ion Irradiated Nanostructured Ferritic Alloys
Aydoğan Güngör, Eda; Maloy, Stuart; Gigax, Jonathan; Price, Lloyd; Chen, Di; Chen, Tianyi; Wang, Xuemei; Garner, Frank; Shao, Lin (null; 2016-02-18)
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Mehrabov, B. Aivazov, and M. Aliyev, “Microstructure and corrosion characteristics of nickelless stainless steels,”
J. of Physicochemical Mechanics of Materials
, pp. 132–137, 2002, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/75716.