An application of k-e model to oscillatory boundary layers

1988-03-01
The k-ε model of turbulence is applied to one-dimensional oscillatory turbulent boundary layer flow. Computations are performed over fine meshes extending from the bottom to the outside of the boundary layer. Effects of low Reynolds number are included in the equations of turbulent kinetic energy and turbulent energy dissipation rate. An additional production of turbulent kinetic energy due to the surface roughness is simulated by introduction of a ‘roughness viscosity’ in the production term of turbulent kinetic energy transport equation. Computed turbulent kinetic energy, Reynolds stresses and friction factors are compared with experimental data. Expressions for the friction factor, wave energy dissipation factor and phase shift are obtained.
Coastal Engineering Journal

Suggestions

Evaluation of a new turbulence model for boundary layer flows with pressure gradient
Marangoz, Alp; Çıray, Cahit; Department of Aerospace Engineering (2005)
In this thesis, a new turbulence model developed previously for channel and flat plate flows is evaluated for flat plate flows with pressure gradient. For this purpose a flow solver, which uses boundary layer equations as the governing equations and Von Karman momentum integral equation for the calculation of skin friction, is developed. It is shown that the error of the new turbulence model, in predicting the velocity profile, is less than 5 % for the flat plate flows without pressure gradient and less tha...
Comparison of the Overlapping Lattice and the Finite Element Approaches for the Prediction of the Collapse State of Concrete Gravity Dams
Soysal Albostan, Berat Feyza; Arıcı, Yalın; Binici, Barış; Tuncay, Kağan (2017-10-13)
Estimating the collapse limit state of concrete gravity dams within the framework of performance based design is challenging due to the uncertainty in modelling the response of these systems and the strong dependence of the behavior on the ground motion. In this context, the purpose of the study is to investigate the prediction capability of numerical tools in determining the collapse state of concrete gravity dams. The first tool used to this end is the classical finite element method with the smeared crac...
Comparison of the overlapping lattice and thefinite element approaches for the prediction of the collapse state of concrete gravity dams
Soysal, Berat Feyza; Arıcı, Yalın; Binici, Barış; Tuncay, Kağan (null; 2017-10-11)
Estimating the collapse limit state of concrete gravity dams within the framework of performance based design is challenging due to the uncertainty in modelling the response of these systems and the strong dependence of the behavior on the ground motion. In this context, the purpose of the study is to investigate the prediction capability of numerical tools in determining the collapse state of concrete gravity dams. The first tool used to this end is the classical finite element method with the smeared crac...
An Experimental Study on Active Flow Control Using Synthetic Jet Actuators over S809 Airfoil
Gul, M; Uzol, Oğuz; Akmandor, I S (IOP Publishing, 2014-6-16)
This study investigates the effect of periodic excitation from individually controlled synthetic jet actuators on the dynamics of the flow within the separation and re-attachment regions of the boundary layer over the suction surface of a 2D model wing that has S809 airfoil profile. Experiments are performed in METUWIND's C3 open-loop suction type wind tunnel that has a 1 m x 1 m cross-section test section. The synthetic jet array on the wing consists of three individually controlled actuators driven by pie...
An Implementation of probabilistic seismic hazard analysis in selection of seismic coefficient for pseudostatic analysis of slope stability
Gedikaslan, Kübra; Yılmaz, Mustafa Tolga; Erberik, Murat Altuğ; Department of Earthquake Studies (2017)
The seismic coefficient, kh, is a seismic design parameter. This parameter defines the ratio of inertial force acting on a mass to its weight, and is practically used in pseudostatic analyses of seismic slope stability. This design parameter can be assigned by the principles of performance-based design after simplifications regarding the relationship between ground displacement and probabilistic seismic hazard. A widely used simplification is to consider Newmark's sliding block analogy for estimations of se...
Citation Formats
İ. Aydın, “An application of k-e model to oscillatory boundary layers,” Coastal Engineering Journal, pp. 11–24, 1988, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/76057.