Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Evaluation of a new turbulence model for boundary layer flows with pressure gradient
Download
index.pdf
Date
2005
Author
Marangoz, Alp
Metadata
Show full item record
Item Usage Stats
251
views
80
downloads
Cite This
In this thesis, a new turbulence model developed previously for channel and flat plate flows is evaluated for flat plate flows with pressure gradient. For this purpose a flow solver, which uses boundary layer equations as the governing equations and Von Karman momentum integral equation for the calculation of skin friction, is developed. It is shown that the error of the new turbulence model, in predicting the velocity profile, is less than 5 % for the flat plate flows without pressure gradient and less than 10 % for the flat plate flows with favorable pressure gradient. It is also shown that results with an error in the order of 20 % can be achieved for the flat plate flows with adverse pressure gradient.
Subject Keywords
Aeronautics.
URI
http://etd.lib.metu.edu.tr/upload/12606496/index.pdf
https://hdl.handle.net/11511/15417
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Parallel navier stokes solutions of low aspect ratio rectangular flat wings in compressible flow
Durmuş, Gökhan; Eyi, Sinan; Department of Aeronautical Engineering (2004)
The objective of this thesis is to accomplish the three dimensional parallel thin-layer Navier-Stokes solutions for low aspect ratio rectangular flat wings in compressible flow. Two block parallel Navier Stokes solutions of an aspect ratio 1.0 flat plate with sharp edges are obtained at different Mach numbers and angles of attack. Reynolds numbers are of the order of 1.0E5-3.0E5. Two different grid configurations, the coarse and the fine grids, are applied in order to speed up convergence. In coarse grid co...
Design and performance analysis of a variable pitch axial flow fan for Anakara wind tunnel
Yalçın, Levent; Akmandor, İbrahim Sinan; Department of Aerospace Engineering (2006)
In this study, a variable pitch axial flow fan is designed and analysed for Ankara Wind Tunnel (AWT). In order to determine the loss caharacteristics of AWT, an algorithm is developed and the results are validated. Also some pressure and velocity measurements are made at the fan section to find the losses experimentally. After completion of the fan design, analyses are made at different volumetric flowrates and blade angles including the design point and the performance characteristics of the fan are obtain...
Three-dimensional design and analysis of a compressor rotor blade
Özgür, Cumhur; Akmandor, İbrahim Sinan; Department of Aerospace Engineering (2005)
Three-dimensional design and three-dimensional CFD analysis of a compressor rotor stage are performed. The design methodology followed is based on a mean line analysis and a radial equilibrium phase. The radial equilibrium is established at a selected number of radii. NACA 65 series airfoils are selected and stacked according to the experimental data available. The CFD methodology applied is based on a three-dimensional, finite difference, compressible flow Euler solver that includes the source terms belong...
A layerwise approach to modeling piezolaminated plates
Ertürk, Cevher Levent; Tekinalp, Ozan; Department of Aerospace Engineering (2005)
In this thesis, optimal placement of adhesively bonded piezoelectric patches on laminated plates and the determination of geometry of the bonding area to maximize actuation effect are studied. A new finite element model, in which each layer is considered to be a separate plate, is developed. The adhesive layer is modeled as a distributed spring system. In this way, relative transverse normal and shear motion of the layers are allowed. Effect of delamination on the adhesive layer stresses is also studied and...
Gas-kinetic methods for 3-d inviscid and viscous flow solutions on unstructured/hybrid grids
Ilgaz, Murat; Tuncer, İsmail Hakkı; Department of Aerospace Engineering (2007)
In this thesis, gas-kinetic methods for inviscid and viscous flow simulations are developed. Initially, the finite volume gas-kinetic methods are investigated for 1-D flows as a preliminary study and are discussed in detail from theoretical and numerical points of view. The preliminary results show that the gas-kinetic methods do not produce any unphysical flow phenomena. Especially the Gas-Kinetic BGK method, which takes into account the particle collisions, predicts compressible flows accurately. The Gas-...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Marangoz, “Evaluation of a new turbulence model for boundary layer flows with pressure gradient,” M.S. - Master of Science, Middle East Technical University, 2005.