Adaptation measures for seawalls to withstand sea-level rise

2022-04-15
Kisacik, Dogan
Özyurt Tarakcıoğlu, Gülizar
Cappietti, Lorenzo
© 2022 Elsevier LtdSea level rise necessitates adaptation measures for coastal protection structures like seawalls as changes in the design conditions will generate higher wave overtopping discharges and coastal flooding. Although increasing crest height is a common measure, the recreational function of urban seawalls limits the applicability. In this paper, performance on overtopping control of crest modifications such as storm walls, parapets, promenade, and stilling wave basin (SWB), are studied for simple and composite vertical seawalls. Two independent physical model studies from Turkey and Italy that cover a wide range of hydrodynamic conditions focusing on low relative freeboard are presented. Reduction factors that can be integrated into EurOtop prediction formulae (2018) are proposed within the experiment boundaries. The results show that a simple promenade, extending landward of a vertical seawall, provides very little reduction, whereas a seaward storm wall, under low freeboard conditions, is not effective as a similar storm wall once located on the landward edge of the promenade. Parapets decrease the overtopping further, however, the increase in relative freeboard influences the effect of parapets. Basin width and storm wall heights are important design parameters for SWB. Although the performance of different SWB configurations converges to lower reduction factors as the relative freeboard decreases, they perform better overall. Further analysis showed that the multiplication of the two individual reduction factors, one for the parapet effects and one for the promenade effects could provide an accurate representation of the composite reduction factor to determine the total effect. However, for complex geometries, it is seen that the composite reduction factors should reflect the interdependency of components when different elements with different mechanisms that change the overtopping discharge exist such as an overtopping bore on the promenade overtopping a storm wall. However, for developing future design guidelines, it is also important to consider the influence of individual components on the composite reduction factors such as the influence of storm wall height for a storm wall at the end of a promenade.
Ocean Engineering

Suggestions

Numerical solution to kinematic wave equation for surface runoff analysis using satellite based DEM data
Yıldırım, Hasan Hüseyin; Aydın, İsmail; Department of Civil Engineering (2020-9)
Modeling of rainfall runoff over large catchment areas is a critical step in flood analysis to estimate the time-wise variation of discharge at the outlet of hydrological basin. Outlet hydrograph of a basin is generally estimated using empirical formulations based on measurements from previous rainfall events. However, these empirical methods may not correctly model the surface flow dynamics over large and complex geometries. In this study, a fully distributed numerical model is developed that can deal with...
Fuzzy Vulnerability Assessment of Coastal Areas To Sea Level Rise
ÖZYURT, GÜLİZAR; Ergin, Ayşen; Baykal, Cüneyt (2010-07-05)
This paper discusses a parameter based coastal vulnerability assessment model to sea level rise. The model integrates physical characteristics and human activities with expert perception through an application of analytical hierarchy process (AHP). The results of AHP enables users to assign weights to parameters of the model which determine vulnerability of a coastal area to the impacts of sea level rise such as coastal erosion, inundation, flooding due to storm surges, saltwater intrusion to groundwater an...
Improving Coastal Vulnerability Assessments to Sea-Level Rise: A New Indicator-Based Methodology for Decision Makers
Özyurt Tarakcıoğlu, Gülizar; Ergin, Ayşen (2010-03-01)
Integration of impacts of sea-level rise to coastal zone management practices are performed through coastal vulnerability assessments. Out of the types of vulnerability assessments, a proposed model demonstrated that relative vulnerability of different coastal environments to sealevel rise may be quantified using basic information that includes coastal geomorphology, rate of sea-level rise, and past shoreline evolution for the National Assessment of Coastal Vulnerability to Sea-Level Rise for U.S. Coasts. T...
Coastal vulnerability assessment to sea level rise integrated with analytical hierarchy process
Özyurt, Gülizar; Ergin, Ayşen; Baykal, Cüneyt (2010-12-01)
This paper discusses a parameter based coastal vulnerability assessment model to sea level rise. The model integrates physical characteristics and human activities with expert perception through an application of analytical hierarchy process (AHP). The results of AHP enables users to assign weights to parameters of the model which determine vulnerability of a coastal area to the impacts of sea level rise such as coastal erosion, inundation, flooding due to storm surges, saltwater intrusion to groundwater an...
Trend Analyses of Meteorological Variables and Lake Levels for Two Shallow Lakes in Central Turkey
YAĞBASAN, ÖZLEM; Demir, Vandettin; Yazıcıgil, Hasan (2020-02-01)
Trend analyses of meteorological variables play an important role in assessing the long-term changes in water levels for sustainable management of shallow lakes that are extremely vulnerable to climatic variations. Lake Mogan and Lake Eymir are shallow lakes offering aesthetic, recreational, and ecological resources. Trend analyses of monthly water levels and meteorological variables affecting lake levels were done by the Mann-Kendall (MK), Modified Mann-Kendall (MMK), Sen Trend (ST), and Linear trend (LT) ...
Citation Formats
D. Kisacik, G. Özyurt Tarakcıoğlu, and L. Cappietti, “Adaptation measures for seawalls to withstand sea-level rise,” Ocean Engineering, vol. 250, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85126534938&origin=inward.