Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Training ANFIS using genetic algorithm for dynamic systems identification
Date
2016-09-03
Author
Haznedar, Bülent
Kalınlı, Adem
Metadata
Show full item record
Item Usage Stats
129
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/77690
Conference Name
International Conference on Advanced Technology & Sciences (ICAT'16), (01 - 03 Eylül 2016)
Collections
Unverified, Conference / Seminar
Suggestions
OpenMETU
Core
Training Elman Networks for Nonlinear System Identification Using Simulated Annealing Algorithm
Kalınlı, Adem (2003-07-04)
Training ANFIS structure using genetic algorithm for liver cancer classification based on microarray gene expression data
Haznedar, Bülent; Arslan, Mustafa Turan; Kalınlı, Adem (2017-02-01)
Normal 0 21 false false false TR X-NONE X-NONE ...
Karaciğer mikrodizi kanser verisinin sınıflandırılması için genetik algoritma kullanarak ANFIS’in eğitilmesi
Haznedar, Bülent; Arslan, Mustafa Turan; Kalınlı, Adem (2017-01-01)
Sınıflandırma, verilerin analiz edilmesi için önemli bir veri madenciliği tekniği olup tıp, genetik ve biyomedikal mühendisliği başta olmak üzere birçok alanda kullanılmaktadır. Özellikle tıp alanında DNA mikrodizi gen ekspresyon verilerini sınıflandırmaya yönelik yapılan çalışmalarda artış görülmektedir. Ancak, mikrodizi gen ekspresyon (ifade) verilerinde bulunan gen sayılarının çokluğu ve bu veriler arasında doğrusal olmayan bağıntılar bulunması gibi problemlerden dolayı geleneksel sınıflandırma algor...
Training object detectors by directly optimizing lrp metric
Çam, Barış Can; Akbaş, Emre; Kalkan, Sinan; Department of Computer Engineering (2020-9)
This thesis focuses on training deep object detection networks by directly optimizing the localisation-recall-precision (LRP) performance metric that can evaluate classification and localisation performance of an object detector in a unified manner (Oksuz et al., 2018). To achieve this goal, unlike the commonly used linear weighting approach, we aim to implicitly optimize the LRP metric first by using a bounded localisation loss from previous works and proposing a loss function that can bound the range ...
Training Recurrent Neural Networks Using Tabu Search Algorithm
Karaboğa, Derviş; Kalınlı, Adem (1996-06-04)
There are several modern heuristic optimisation techniques, such as neural networks, genetic algorithms, simulated annealing and tabu search algorithms. Of these algorithms, the tabu search is quite a new, promising search technique for numeric problems, especially for nonlinear problems. However, the convergence speed of the standard tabu search to the global optimum is initial-solution-dependent, since it is a form of iterative search. In this paper, a new model of tabu searching, which has been proposed ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Haznedar and A. Kalınlı, “Training ANFIS using genetic algorithm for dynamic systems identification,” Konya, Türkiye, 2016, p. 23, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/77690.